Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (4): 1051-1062.doi: 10.16182/j.issn1004731x.joss.23-1416
• Papers • Previous Articles
Xu Ming, Li Jinye, Zuo Dongyu, Zhang Jing
Received:
2023-11-21
Revised:
2023-12-27
Online:
2025-04-17
Published:
2025-04-16
CLC Number:
Xu Ming, Li Jinye, Zuo Dongyu, Zhang Jing. Signal Timing Optimization via Reinforcement Learning with Traffic Flow Prediction[J]. Journal of System Simulation, 2025, 37(4): 1051-1062.
Table 3
Task I performance of each indicator
方法 | ANS | AS/(m/s) | AVD/s | AWTV/s | ATTV/s | PF/(次/min) |
---|---|---|---|---|---|---|
本文方法相比最优/次优的提升/% | 36.67 | -2.71 | 6.50 | -38.22 | 2.94 | 11.98 |
Fixed-time | 1.36 | 4.05 | 144.51 | 121.98 | 187.76 | 1.67 |
SOTL | 1.20 | 5.60 | 77.72 | 60.00 | 126.29 | 2.27 |
MaxPressure | 2.57 | 6.45 | 77.42 | 48.61 | 126.22 | 11.40 |
RainbowDQN | 3.16 | 5.48 | 78.78 | 36.44 | 128.11 | 9.53 |
PPO | 2.64 | 5.87 | 76.59 | 40.99 | 125.16 | 9.30 |
本文 | 0.76 | 6.28 | 71.61 | 58.98 | 121.48 | 1.47 |
Table 4
Task II performance of each indicator
方法 | ANS | AS/(m/s) | AVD/s | AWTV/s | ATTV/s | PF/(次/min) |
---|---|---|---|---|---|---|
本文方法相比最优/次优的提升/% | 42.38 | 2.74 | 19.87 | -14.90 | 13.95 | 16.17 |
Fixed-time | 1.55 | 3.71 | 169.65 | 142.89 | 210.09 | 1.67 |
SOTL | 1.51 | 5.50 | 97.95 | 75.83 | 145.31 | 3.27 |
MaxPressure | 3.49 | 5.84 | 102.91 | 53.53 | 149.47 | 11.63 |
RainbowDQN | 3.49 | 4.70 | 113.72 | 54.86 | 153.17 | 9.17 |
PPO | 3.89 | 4.58 | 162.22 | 97.83 | 204.25 | 9.33 |
本文 | 0.87 | 6.00 | 78.49 | 62.90 | 125.04 | 1.40 |
Table 5
Task III performance of each indicator
方法 | ANS | AS/(m/s) | AVD/s | AWTV/s | ATTV/s | PF/(次/min) |
---|---|---|---|---|---|---|
本文方法相比最优/次优的提升/% | 31.21 | -3.68 | -0.93 | -9.46 | -0.86 | 8.38 |
Fixed-time | 1.41 | 4.13 | 149.61 | 125.67 | 190.52 | 1.67 |
SOTL | 1.42 | 5.63 | 90.88 | 70.68 | 136.40 | 3.23 |
MaxPressure | 4.88 | 5.07 | 135.40 | 68.18 | 174.43 | 12.07 |
RainbowDQN | 3.66 | 4.33 | 144.71 | 86.13 | 177.27 | 9.07 |
PPO | 4.22 | 4.11 | 201.73 | 136.95 | 230.06 | 9.50 |
本文 | 0.97 | 5.43 | 91.73 | 75.30 | 137.59 | 1.53 |
1 | Md Mokhlesur Rahman, Najaf P, Fields M G, et al. Traffic Congestion and Its Urban Scale Factors: Empirical Evidence from American Urban Areas[J]. International Journal of Sustainable Transportation, 2021, 16(5): 406-421. |
2 | Hunt P B, Robertson D I, Bretherton R D, et al. The SCOOT On-line Traffic Signal Optimisation Technique[J]. Traffic Engineering & Control, 1982, 23(4): 190-192. |
3 | Lowrie P R. Scats, Sydney Co-ordinated Adaptive Traffic System: A Traffic Responsive Method of Controlling Urban Traffic[M]. Australia: Roads and Traffic Authority NSW, 1990: 28. |
4 | 陆丽萍, 程垦, 褚端峰, 等. 基于竞争循环双Q网络的自适应交通信号控制[J]. 中国公路学报, 2022, 35(8): 267-277. |
Lu Liping, Cheng Ken, Chu Duanfeng, et al. Adaptive Traffic Signal Control Based on Dueling Recurrent Double Q Network[J]. China Journal of Highway and Transport, 2022, 35(8): 267-277. | |
5 | Wei Hua, Chen Chacha, Zheng Guanjie, et al. PressLight: Learning Max Pressure Control to Coordinate Traffic Signals in Arterial Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1290-1298. |
6 | Varaiya P. Max Pressure Control of a Network of Signalized Intersections[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 177-195. |
7 | 宋太龙, 贺玉龙, 刘钦. 基于深度强化学习的大型活动关键交叉口信号控制[J]. 科学技术与工程, 2023, 23(22): 9694-9701. |
Song Tailong, He Yulong, Liu Qin. Signal Control of Key Intersections in Large-scale Events Based on Deep Reinforcement Learning[J]. Science Technology and Engineering, 2023, 23(22): 9694-9701. | |
8 | 高涵, 罗娟, 蔡乾娅, 等. 一种基于异步决策的智能交通信号协调方法[J]. 计算机研究与发展, 2023, 60(12): 2797-2805. |
Gao Han, Luo Juan, Cai Qianya, et al. An Intelligent Traffic Signal Coordination Method Based on Asynchronous Decision-making[J]. Journal of Computer Research and Development, 2023, 60(12): 2797-2805. | |
9 | 唐慕尧, 周大可, 李涛. 结合状态预测的深度强化学习交通信号控制[J]. 计算机应用研究, 2022, 39(8): 2311-2315. |
Tang Muyao, Zhou Dake, Li Tao. State Prediction Based Deep Reinforcement Learning for Traffic Signal Control[J]. Application Research of Computers, 2022, 39(8): 2311-2315. | |
10 | Chu K F, Lam A Y S, Li V O K. Traffic Signal Control Using End-to-end Off-policy Deep Reinforcement Learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7184-7195. |
11 | 舒凌洲, 吴佳, 王晨. 基于深度强化学习的城市交通信号控制算法[J]. 计算机应用, 2019, 39(5): 1495-1499. |
Shu Lingzhou, Wu Jia, Wang Chen. Urban Traffic Signal Control Based on Deep Reinforcement Learning[J]. Journal of Computer Applications, 2019, 39(5): 1495-1499. | |
12 | 费蓉, 刘方, 谢国, 等. 基于门控循环单元的车辆跟驰行为仿真模型[J]. 系统仿真学报, 2020, 32(10): 1862-1873. |
Fei Rong, Liu Fang, Xie Guo, et al. GRU-based Car-following Behavior Simulation Model[J]. Journal of System Simulation, 2020, 32(10): 1862-1873. | |
13 | Siam M, Valipour S, Jagersand M, et al. Convolutional Gated Recurrent Networks for Video Segmentation[C]//2017 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE, 2017: 3090-3094. |
14 | Fan Zhou, Su Rui, Zhang Weinan, et al. Hybrid Actor-critic Reinforcement Learning in Parameterized Action Space[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 2279-2285. |
15 | Schulman J, Moritz P, Levine S, et al. High-dimensional Continuous Control Using Generalized Advantage Estimation[EB/OL]. (2018-10-20) [2023-11-10]. . |
16 | Pablo Alvarez Lopez, Behrisch Michael, Bieker-Walz Laura, et al. Microscopic Traffic Simulation Using SUMO[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway: IEEE, 2018: 2575-2582. |
17 | Zang Xinshi, Yao Huaxiu, Zheng Guanjie, et al. MetaLight: Value-based Meta-reinforcement Learning for Traffic Signal Control[C]//Proceedings of the the Thirty-Fourth AAAI Conference on Artificial Intelligence and Thirty-Second Conference on Innovative Applications of Artificial Intelligence and Tenth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2020: 1153-1160. |
18 | Cools Seung-Bae, Gershenson Carlos, D'Hooghe Bart. Self-organizing Traffic Lights: A Realistic Simulation[M]//Prokopenko M. Advances in Applied Self-Organizing Systems. London: Springer London, 2013: 45-55. |
19 | Hessel M, Modayil J, van Hasselt Hado, et al. Rainbow: Combining Improvements in Deep Reinforcement Learning[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3215-3222. |
20 | Schulman J, Wolski F, Dhariwal P, et al. Proximal Policy Optimization Algorithms[EB/OL]. (2017-08-28) [2023-11-10]. . |
[1] | Zhang Lei, Zhang Xuechao, Wang Chao, Bo Xianglei. An Intelligent Ambulance Regulation Model Based on Online Reinforcement Learning Algorithm [J]. Journal of System Simulation, 2025, 37(3): 584-594. |
[2] | Huang Zhiqin, Lu Tianying, Chen Zheyi. Multi-UAV Deployment and Collaborative Offloading for Large-scale IoT Systems [J]. Journal of System Simulation, 2025, 37(1): 25-39. |
[3] | Jiang Jiachen, Jia Zhengxuan, Xu Zhao, Lin Tingyu, Zhao Pengpeng, Ou Yiming. Decision Modeling and Solution Based on Game Adversarial Complex Systems [J]. Journal of System Simulation, 2025, 37(1): 66-78. |
[4] | Sun Yifeng, Li Zhi, Wu Jiang, Wang Yubin. Research on Learnable Wargame Agent Driven by Battle Scheme [J]. Journal of System Simulation, 2024, 36(7): 1525-1535. |
[5] | Jiang Quan, Wei Jingxuan. Real-time Scheduling Method for Dynamic Flexible Job Shop Scheduling [J]. Journal of System Simulation, 2024, 36(7): 1609-1620. |
[6] | Gong Xue, Peng Pengfei, Rong Li, Zheng Yalian, Jiang Jun. Task Analysis Methods Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(7): 1670-1681. |
[7] | Wang Xi, Yang Xiujian, Jia Xiaohan, Wang Shenyi. Modeling and Analysis of Hybrid Traffic Flow Considering Actual Behavior of Platoon [J]. Journal of System Simulation, 2024, 36(4): 929-940. |
[8] | Qin Baoxin, Zhang Yuxiao, Wu Sirui, Cao Weichong, Li Zhan. Intelligent Optimization of Coal Terminal Unloading Scheduling Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2024, 36(3): 770-781. |
[9] | Wang Qiaochu, Ding Yan, Liang Chuanzhi, Zhang Haozheng, Huang Chen. Research on Scheduling Strategies Simulation for Building Air-conditioning Systems Based on Transfer Imitation Learning [J]. Journal of System Simulation, 2024, 36(12): 2884-2893. |
[10] | Li Ming, Ye Wangzhong, Yan Jiehua. Path Planning of Desert Robot Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(12): 2917-2925. |
[11] | Miao Tianyue, Wang Lu, He Jiaxiao, Xie Nenggang. Research on Digital Twin Simulation Method of Industrial Robot Integrated with Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(12): 2971-2983. |
[12] | Ding Kaiyuan, Hamdulla Askar, Zhu Bin, Firkat Eksan, Ma Zhengtang. End-to-end Motion Planning of Unmanned Vehicles Based on Multimodal Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(11): 2631-2643. |
[13] | Zhang Yongfu, Liu Yang, Yuan He. A Method for Key Node Identification in Operational Target System Based on War Gaming [J]. Journal of System Simulation, 2024, 36(11): 2654-2661. |
[14] | Li Jian, Li Huankun, He Pengbo, Wang Huabei, Xu Liping, He Kui. Flexible Job Shop Scheduling Method Based on Collaborative Agent Reinforcement Learning Algorithm [J]. Journal of System Simulation, 2024, 36(11): 2699-2711. |
[15] | Zhang Guohui, Gao Ang, Zhang Ya'nan. Combat Effectiveness Evaluation Method of Homogeneous Cluster Equipment System Based on RLoMAG+EAS [J]. Journal of System Simulation, 2024, 36(1): 160-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||