| [1] | 
																						 
											任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358.Ren Hao, Qu Jianfeng, Chai Yi, et al.Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32(8): 1345-1358.
																						 | 
										
																													
																							| [2] | 
																						 
											李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9.Li Han, Xiao Deyun.Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9.
																						 | 
										
																													
																							| [3] | 
																						 
											Gao Z, Cecati C, Ding S X.A Survey of Fault Diagnosis and Fault-Tolerant Techniques-Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches[J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2015, 62(6): 3768-3774.
																						 | 
										
																													
																							| [4] | 
																						 
											雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.Lei Yaguo, Jia Feng, Zhou Xin, et al.A Deep Learning-based Method for Machinery Health Monitoring with Big Data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.
																						 | 
										
																													
																							| [5] | 
																						 
											Xia F, Zhang H, Liu W, et al.Fault Analysis of Condenser Based on RBF Network and D-S Evidence Theory[C]. International Conference on Artificial Intelligence and Computational Intelligence. Berlin, Heidelberg: Springer-Verlag, 2012: 506-513.
																						 | 
										
																													
																							| [6] | 
																						 
											Chen J, Li Y, Ye F.Uncertain information fusion for gearbox fault diagnosis based on BP neural network and DS evidence theory[C]. Intelligent Control and Automation.Guilin, China: IEEE, 2016: 1372-1376.
																						 | 
										
																													
																							| [7] | 
																						 
											赵光权, 葛强强, 刘小勇, 等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报, 2016, 37(9): 1946-1953.Zhao Guangquan, Ge Qiangqiang, Liu Xiaoyong, et al.Fault feature extraction and diagnosis method based on deep belief network[J]. Journal of Instrumentation and Measurement, 2016, 37(9): 1946-1953.
																						 | 
										
																													
																							| [8] | 
																						 
											He K, Zhang X, Ren S, et al.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence (S0162-8828), 2015, 37(9): 1904-1916.
																						 | 
										
																													
																							| [9] | 
																						 
											Kim J, El-Khamy M, Lee J.Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition[C]. Interspeech(S2308-457X), 2017: 1591-1595. DOI:10.21437/Interspeech. 2017-477.
																						 | 
										
																													
																							| [10] | 
																						 
											Hassan A, Mahmood A.Deep Learning approach for sentiment analysis of short texts[C]. International Conference on Control, Automation and Robotics. Nagoya, Japan: IEEE, 2017: 705-710.
																						 | 
										
																													
																							| [11] | 
																						 
											段艳杰, 吕宜生, 张杰, 等. 深度学习在控制领域的研究现状与展望[J]. 自动化学报, 2016, 42(5): 643-654.Duan Yanjie, Lü Yisheng, Zhang Jie, et al.Deep Learning for Control: The State of the Art and Prospects. Acta Automatica Sinica, 2016, 42(5): 643-654.
																						 | 
										
																													
																							| [12] | 
																						 
											Zhang Z, Zhao J.A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering (S0098-1354), 2017, 107: 395-407.
																						 | 
										
																													
																							| [13] | 
																						 
											Shao H, Jiang H, Wang F, et al.Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. Isa Trans (S0019-0578), 2017, 69: 187-201.
																						 | 
										
																													
																							| [14] | 
																						 
											Jing L, Zhao M, Li P, et al.A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement Journal of the International Measurement Confederation (S0263-2241), 2017, 111: 1-10.
																						 | 
										
																													
																							| [15] | 
																						 
											Sun W, Shao S, Zhao R, et al.A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J]. Measurement (S0263-2241), 2016, 89: 171-178.
																						 | 
										
																													
																							| [16] | 
																						 
											Liu H, Zhou J, Zheng Y, et al.fault diagnosis of rolling bearing with recurrent neural network-based autoencoders, ISA Transactions (S0019-0578), 2018, 77: 167-178. https: //doi.org/10.1016/j.isatra.2018.04. 005.
																						 | 
										
																													
																							| [17] | 
																						 
											De B T, Verbert K, Babuska R.Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks[J]. IEEE Transactions on Neural Networks & Learning Systems (S2162-237X), 2017, 28(3): 523-533.
																						 | 
										
																													
																							| [18] | 
																						 
											Lee I, Kim D, Kang S, et al.Ensemble Deep Learning for Skeleton-Based Action Recognition Using Temporal Sliding LSTM Networks[C]. IEEE International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 1012-1020.
																						 | 
										
																													
																							| [19] | 
																						 
											Zhao H, Sun S, Jin B.Sequential Fault Diagnosis based on LSTM Neural Network[J]. IEEE Access (S2169-3536), 2018, 6: 12929-12939.
																						 | 
										
																													
																							| [20] | 
																						 
											De B T, Verbert K, Babuska R.Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks[J]. IEEE Transactions on Neural Networks & Learning Systems (S2162-237X), 2017, 28(3): 522-533.
																						 | 
										
																													
																							| [21] | 
																						 
											Zhang J, Song Y, Li G, et al.A Method of Fault Diagnosis for Rolling Bearing of Wind Turbines Based on Long Short-term Memory Neural Network[J]. Computer Measurement & Control (S1671-4598), 2017, 25(1): 16-19.
																						 | 
										
																													
																							| [22] | 
																						 
											Yuan M, Wu Y, Lin L.Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]. IEEE International Conference on Aircraft Utility Systems. Beijing China: IEEE, 2016: 135-140.
																						 | 
										
																													
																							| [23] | 
																						 
											Graves A.Supervised Sequence Labelling with Recurrent Neural Networks[M]. Berlin Heidelberg: Springer-Verlag, 2012.
																						 | 
										
																													
																							| [24] | 
																						 
											李炜, 张婧瑜. 多模型传感器故障软闭环容错控制研究[J]. 计算机应用研究, 2015(2): 447-450.Li Wei, Zhang Jingyu.Study of multi-model soft close-loop fault-tolerant control with sensor faults[J]. Application Research of Computers, 2015(2): 447-450.
																						 |