Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 508-516.doi: 10.16182/j.issn1004731x.joss.23-1219
• Papers • Previous Articles Next Articles
Fei Shuaidi1, Cai Changlong1, Liu Fei2, Chen Minghui3, Liu Xiaoming3
Received:2023-10-10
Revised:2023-11-10
Online:2025-02-14
Published:2025-02-10
Contact:
Cai Changlong
CLC Number:
Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships[J]. Journal of System Simulation, 2025, 37(2): 508-516.
| 1 | 李龙跃, 刘付显, 赵麟锋. 对多波次目标直接分配到弹的反导火力规划方法[J]. 系统工程与电子技术, 2014(11): 2206-2212. |
| Li Longyue, Liu Fuxian, Zhao Linfeng. Direct Interceptor Allocation Method in Antimissile Firepower Planning for Multiple Wave Targets[J]. Systems Engineering and Electronics, 2014(11): 2206-2212. | |
| 2 | 姚继帅. 多导弹武器-目标分配关键技术研究[D]. 长沙: 国防科技大学, 2020. |
| Yao Jishuai. Research on Key Technology of Multi-missile Weapon-target Assignment[D]. Changsha: National University of Defense Technology, 2020. | |
| 3 | Matlin S. A Review of the Literature on the Missile-allocation Problem[J]. Operations Research, 1970, 18(2): 334-373. |
| 4 | Kline A, Ahner D, Hill R. The Weapon-target Assignment Problem[J]. Computers & Operations Research, 2019, 105: 226-236. |
| 5 | 李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展: 模型、算法与应用[J]. 系统工程与电子技术, 2023, 45(4): 1049-1071. |
| Li Mengjie, Chang Xuening, Shi Jianmai, et al. Developments of Weapon Target Assignment: Models, Algorithms, and Applications[J]. Systems Engineering and Electronics, 2023, 45(4): 1049-1071. | |
| 6 | 宋贵宝, 强裕功, 刘铁, 等. 动态武器目标分配问题的现状与进展[J]. 兵器装备工程学报, 2022, 43(12): 83-88. |
| Song Guibao, Qiang Yugong, Liu Tie, et al. The Present Situation and Progress of Dynamic Weapon Target Assignment[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 83-88. | |
| 7 | 葛志欣. 基于深度强化学习的多智能体协同决策研究[D]. 大连: 大连理工大学, 2021. |
| Ge Zhixin. Research on Collaborative Decision of Multi-agent Based on Deep Reinforcement Learning[D]. Dalian: Dalian University of Technology, 2021. | |
| 8 | 张梦钰, 豆亚杰, 陈子夷, 等. 深度强化学习及其在军事领域中的应用综述[J]. 系统工程与电子技术, 2024, 46(4): 1297-1308. |
| Zhang Mengyu, Dou Yajie, Chen Ziyi, et al. Review of Deep Reinforcement Learning and Its Applications in Military Field[J]. Systems Engineering and Electronics, 2024, 46(4): 1297-1308. | |
| 9 | 李冬雪. 基于深度强化学习的资源分配问题研究[D]. 北京: 北京交通大学, 2021. |
| Li Dongxue. Research on Resource Assignment Problem Based on Deep Reinforcement Learning[D]. Beijing: Beijing Jiaotong University, 2021. | |
| 10 | 熊蓉玲, 段春怡, 冉华明, 等. 基于深度强化学习的智能决策方法[J]. 电讯技术, 2023, 63(1): 1-6. |
| Xiong Rongling, Duan Chunyi, Ran Huaming, et al. An Intelligent Decision Making Method Based on Deep Reinforcement Learning[J]. Telecommunications Technology, 2023, 63(1): 1-6. | |
| 11 | Li Xiaoyang, Zhou Deyun, Yang Zhen, et al. A Novel Genetic Algorithm for the Synthetical Sensor-weapon-target Assignment Problem[J]. Applied Sciences, 2019, 9(18): 3803. |
| 12 | Chang Tianqing, Kong Depeng, Hao Na, et al. Solving the Dynamic Weapon Target Assignment Problem by an Improved Artificial Bee Colony Algorithm with Heuristic Factor Initialization[J]. Applied Soft Computing, 2018, 70: 845-863. |
| 13 | Chang Yizhe, Li Zhanwu, Kou Yingxin, et al. A New Approach to Weapon-target Assignment in Cooperative Air Combat[J]. Mathematical Problems in Engineering, 2017, 2017(1): 2936279. |
| 14 | 龙腾, 刘震宇, 史人赫, 等. 基于神经网络的防空武器目标智能分配方法[J]. 空天防御, 2021, 4(1): 1-7. |
| Long Teng, Liu Zhenyu, Shi Renhe, et al. Neural Network Based Air Defense Weapon Target Intelligent Assignment Method[J]. Air & Space Defense, 2021, 4(1): 1-7. | |
| 15 | 肖友刚, 金升成, 毛晓, 等. 基于深度强化学习的舰船导弹目标分配方法[J/OL]. 控制理论与应用. (2023-06-12) [2023-09-24]. . |
| Xiao Yougang, Jin Shengcheng, Mao Xiao, et al. Deep Reinforcement Learning Based Target Assignment Method for Ship Missile[J/OL]. Control Theory & Applications. (2023-06-12) [2023-09-24]. . | |
| 16 | 李思远. 面向智能军事决策的深度强化学习算法研究[D]. 太原: 中北大学, 2022. |
| Li Siyuan. Research on Deep Reinforcement Learning Algorithm for Intelligent Military Decision[D]. Taiyuan: North University of China, 2022. | |
| 17 | 朱建文, 赵长见, 李小平, 等. 基于强化学习的集群多目标分配与智能决策方法[J]. 兵工学报, 2021, 42(9): 2040-2048. |
| Zhu Jianwen, Zhao Changjian, Li Xiaoping, et al. Multi-target Assignment and Intelligent Decision Based on Reinforcement Learning[J]. Acta Armamentarii, 2021, 42(9): 2040-2048. | |
| 18 | Junyoung Chung, Gulcehre Caglar, Cho KyungHyun, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. (2014-12-11) [2023-10-08]. . |
| 19 | Lipton Z C, Berkowitz J, Elkan C. A Critical Review of Recurrent Neural Networks for Sequence Learning[EB/OL]. (2015-10-17) [2023-10-08]. . |
| 20 | Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
| [2] | Jiang Yanji, Zhang Yingyang, Dong Hao, Zhang Xiaoguang, Wang Meihui. Lane Detection in Dark Light Based on Instance Association [J]. Journal of System Simulation, 2025, 37(9): 2188-2199. |
| [3] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
| [4] | Liu Zilong, Zhang Lei. Detection of Small Apple Targets Based on Improved YOLOv5 in Natural Environments [J]. Journal of System Simulation, 2025, 37(8): 2124-2138. |
| [5] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
| [6] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
| [7] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
| [8] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [9] | Zhang Sen, Dai Qiangqiang. UAV Path Planning Based on Improved Deep Deterministic Policy Gradients [J]. Journal of System Simulation, 2025, 37(4): 875-881. |
| [10] | Li Min, Zhang Sen, Zeng Xiangguang, Wang Gang, Zhang Tongwei, Xie Dijie, Ren Wenzhe, Zhang Tao. Trajectory Planning of Quadruped Robot Over Obstacle with Single Leg Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(4): 895-909. |
| [11] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
| [12] | Wang He, Xu Jianing, Yan Guangyu. Research on Pedestrian Avoidance Strategy for AGV Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(3): 595-606. |
| [13] | Zhang Bin, Lei Yonglin, Li Qun, Gao Yuan, Chen Yong, Zhu Jiajun, Bao Chenlong. Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation [J]. Journal of System Simulation, 2025, 37(3): 763-774. |
| [14] | Huang Sijin, Wen Jia, Chen Zheyi. Intelligent Service Migration towards MEC-based IoV Systems [J]. Journal of System Simulation, 2025, 37(2): 379-391. |
| [15] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||