Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (8): 1978-1990.doi: 10.16182/j.issn1004731x.joss.24-0244
• Papers • Previous Articles
Lu Bin1,2, Yang Xuan1,2, Yang Zhenyu1,2, Gao Xiaotian1
Received:
2024-03-14
Revised:
2024-05-17
Online:
2025-08-20
Published:
2025-08-26
Contact:
Yang Xuan
CLC Number:
Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection[J]. Journal of System Simulation, 2025, 37(8): 1978-1990.
Table 2
Comparison of effects of different attention mechanisms
注意力机制 | 位置 | 精确率/% | 召回率/% | mAP0.5/% | 参数量/106 | FLOPs/109 |
---|---|---|---|---|---|---|
YOLOv8n | 92.2 | 89.7 | 92.1 | 3.151 904 | 8.7 | |
YOLOv8n+RA | Backbone | 92.9 | 90.4 | 91.8 | 3.328 976 | 8.0 |
Neck | 93.1 | 88.2 | 92.4 | 3.319 040 | 8.3 | |
YOLOv8n+CA | Backbone | 92.8 | 91.1 | 91.8 | 3.285 792 | 9.0 |
Neck | 91.6 | 90.2 | 89.7 | 3.279 776 | 9.0 | |
YOLOv8n+ECA | Backbone | 92.8 | 90.8 | 92.4 | 3.219 680 | 8.8 |
Neck | 93.1 | 91.3 | 92.6 | 3.219 680 | 8.8 | |
YOLOv8n+MLCA | Backbone | 92.9 | 90.8 | 92.7 | 3.151 938 | 8.7 |
Neck | 93.6 | 92.8 | 93.2 | 3.151 932 | 8.7 |
Table 3
Comparison of different improvement strategies
LAWS | GMSC | BIFPN | MLCA | Inner-CIoU | 精确率/% | 召回率/% | mAP0.5/% | FLOPs/109 | 参数量/106 |
---|---|---|---|---|---|---|---|---|---|
92.2 | 89.7 | 92.1 | 8.7 | 3.151 904 | |||||
√ | 93.8 | 92.2 | 92.9 | 7.9 | 2.675 848 | ||||
√ | 93.6 | 90.2 | 92.7 | 7.6 | 2.862 974 | ||||
√ | 94.2 | 92.7 | 93.1 | 6.8 | 2.031 124 | ||||
√ | 93.6 | 91.8 | 92.2 | 8.7 | 3.151 932 | ||||
√ | √ | 94.4 | 92.6 | 93.8 | 7.5 | 2.387 336 | |||
√ | √ | √ | 96.1 | 93.5 | 96.4 | 6.5 | 1.616 692 | ||
√ | √ | √ | √ | 96.4 | 94.1 | 97.1 | 6.5 | 1.616 795 | |
√ | √ | √ | √ | √ | 96.8 | 95.3 | 97.6 | 6.5 | 1.616 795 |
Table 4
Experimental results of seven models
算法名称 | mAP0.5/% | 精确率/% | 召回率/% | 参数量/106 | FLOPs/109 | 帧率/(帧/s) |
---|---|---|---|---|---|---|
Faster RCNN | 85.6 | 83.1 | 82.8 | 41.2 | 198.5 | 45 |
YOLOv5n | 86.7 | 86.9 | 84.3 | 1.9 | 4.5 | 98 |
YOLOv5s | 88.2 | 87.1 | 83.8 | 7.2 | 16.5 | 70 |
YOLOXs | 91.3 | 89.1 | 86.9 | 9.0 | 26.8 | 60 |
YOLOv7-tiny | 91.8 | 91.2 | 87.3 | 6.2 | 13.7 | 68 |
YOLOv8n | 92.1 | 92.2 | 89.7 | 3.2 | 8.7 | 87 |
LAW-YOLO | 97.6 | 96.8 | 95.3 | 1.6 | 6.5 | 91 |
[1] | Sun Hongbin, Ramuhalli P, Jacob R E. Machine Learning for Ultrasonic Nondestructive Examination of Welding Defects: A Systematic Review[J]. Ultrasonics, 2023, 127: 106854. |
[2] | 王庆, 姚俊, 谭文禄, 等. 基于Faster R-CNN的排水管道缺陷检测研究[J]. 软件导刊, 2019, 18(10): 40-44, 49. |
Wang Qing, Yao Jun, Tan Wenlu, et al. Research on Defect Detection of Drainage Pipeline Based on Faster R-CNN[J]. Software Guide, 2019, 18(10): 40-44, 49. | |
[3] | 孙志刚, 赵毅, 刘传水, 等. 基于深度学习的金属焊接管道内壁缺陷检测方法研究[J]. 焊管, 2020, 43(7): 1-7. |
Sun Zhigang, Zhao Yi, Liu Chuanshui, et al. Research on Inner Wall Defect Detection Method of Metal Welded Pipe Based on Deep Learning[J]. Welded Pipe and Tube, 2020, 43(7): 1-7. | |
[4] | Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
[5] | 李砚峰, 刘翠荣, 吴志生, 等. 基于深度学习的化工金属材料焊接小目标缺陷识别定位研究[J]. 材料保护, 2020, 53(8): 186. |
[6] | 胡宏伟, 张婕, 彭刚, 等. 基于LBP-KPCA特征提取的焊缝超声检测缺陷分类方法[J]. 焊接学报, 2019, 40(6): 34-39. |
Hu Hongwei, Zhang Jie, Peng Gang, et al. Defect Classification for Ultrasonic Inspection in Weld Seam Based on LBP-KPCA Feature Extraction[J]. Transactions of the China Welding Institution, 2019, 40(6): 34-39. | |
[7] | Bao Yanqi, Song Kechen, Liu Jie, et al. Triplet-graph Reasoning Network for Few-shot Metal Generic Surface Defect Segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
[8] | Xu H, Yan Z H, Ji B W, et al. Defect Detection in Welding Radiographic Images Based on Semantic Segmentation Methods[J]. Measurement, 2022, 188: 110569. |
[9] | Lin T Y, Dollár Piotr, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 936-944. |
[10] | He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778. |
[11] | Redmon J, Farhadi A. Yolov3: An Incremental Improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1-6. |
[12] | Ultralytics. Ultralytics Yolov5[EB/OL].[2023-12-16].. |
[13] | Ge Zheng, Liu Songtao, Wang Feng, et al. YOLOX: Exceeding YOLO Series in 2021[EB/OL]. (2021-08-06) [2023-10-16]. . |
[14] | Wang C Y, Bochkovskiy A, Liao Hongyuan. YOLOv7: Trainable Bag-of-freebies Sets New State-of-the-art for Real-time Object Detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475. |
[15] | Reis D, Kupec J, Hong J, et al. Real-time Flying Object Detection with YOLOv8[EB/OL]. (2023-05-17) [2023-10-17]. . |
[16] | Wan Dahang, Lu Rongsheng, Shen Siyuan, et al. Mixed Local Channel Attention for Object Detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123, Part C: 106442. |
[17] | Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: More Features from Cheap Operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1577-1586. |
[18] | Tan Mingxing, Pang Ruoming, Le Q V. EfficientDet: Scalable and Efficient Object Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 10778-10787. |
[19] | Kupyn Orest, Budzan Volodymyr, Mykhailych Mykola, et al. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8183-8192. |
[20] | Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13708-13717. |
[21] | Zhang Xin, Liu Chen, Yang Degang, et al. RFAConv: Innovating Spatital Attention and Standard Convolutional Operation[EB/OL]. (2023-04-06) [2023-10-21]. . |
[22] | Srinivas A, Lin T Y, Parmar N, et al. Bottleneck Transformers for Visual Recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 16514-16524. |
[23] | Liu Shu, Qi Lu, Qin Haifang, et al. Path Aggregation Network for Instance Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
[24] | Li Xiang, Chengqi Lü, Wang Wenhai, et al. Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3139-3153. |
[25] | Zhang Hao, Xu Cong, Zhang Shuaijie. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box[EB/OL]. (2023-11-14) [2023-12-27]. . |
[26] | Yang Dingming, Cui Yanrong, Yu Zeyu, et al. Deep Learning Based Steel Pipe Weld Defect Detection[J]. Applied Artificial Intelligence, 2021, 35(15): 1237-1249. |
[27] | Fu Jianlong, Zheng Heliang, Mei Tao. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 4476-4484. |
[28] | Wang Qilong, Wu Banggu, Zhu Pengfei, et al. ECA-net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 11531-11539. |
[29] | Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 618-626. |
[1] | Feng Zhiyuan, Chen Ying. Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning [J]. Journal of System Simulation, 2025, 37(6): 1499-1511. |
[2] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
[3] | Wang He, Xu Jianing, Yan Guangyu. Research on Pedestrian Avoidance Strategy for AGV Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(3): 595-606. |
[4] | Hao Yu, Jinxia Jiang, Xiaohan Lai, Feng Mei, Qing Wang. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network [J]. Journal of System Simulation, 2023, 35(7): 1572-1580. |
[5] | Bingan Yuan, Mingen Zhong, Jingxin Ni. Research on Visual Inspection Algorithm of Crimping Appearance Defects for Wiring Harness Terminals [J]. Journal of System Simulation, 2022, 34(5): 1152-1159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||