Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (7): 1546-1558.doi: 10.16182/j.issn1004731x.joss.23-0430
Yin Rui(), Lu Wei(
), Yang Jianhua
Received:
2023-04-12
Revised:
2023-06-05
Online:
2024-07-15
Published:
2024-07-12
Contact:
Lu Wei
E-mail:yinrui@mail.dlut.edu.cn;luwei@dlut.edu.cn
CLC Number:
Yin Rui, Lu Wei, Yang Jianhua. A Deep Fuzzy Classifier Based on Feature Transform and Reconstruction[J]. Journal of System Simulation, 2024, 36(7): 1546-1558.
Table 1
Publicly available datasets
数据集 | 特征数 | 样本数 | 类别 | 来源 |
---|---|---|---|---|
Kddcup99(KDD) | 41 | 494 019 | 23 | KEEL |
Musk(v2)(MUK) | 166 | 6 598 | 2 | UCI |
Mushroom(MUM) | 21 | 8 124 | 2 | UCI |
Adult(ADU) | 14 | 48 842 | 2 | UCI |
Magic04(MAG) | 10 | 19 020 | 2 | KEEL |
Electricity pricing(ELE) | 8 | 45 312 | 2 | UCI |
Skin segmentation(SKI) | 3 | 245 057 | 2 | UCI |
Seismic bubmps(SEI) | 18 | 2 584 | 2 | UCI |
Pageblocks(PAG) | 10 | 5 473 | 5 | KEEL |
Thyroid(THY) | 21 | 7 200 | 3 | KEEL |
Miniboone(MBO) | 50 | 130 064 | 2 | UCI |
Table 3
Hyper parameters of FR-DFC for the first group of comparison experiments
数据集 | d | Ml | Nk | Pbs |
---|---|---|---|---|
KDD | 2 | 14,11 | 9,1,8,7,7,7,6,3,3,9,6, 7,7,8,4,5,5,1,3,6,1,2,5 | 50 176 |
MUK | 3 | 7,4,4 | 7,1 | 1 088 |
MUM | 2 | 4,3 | 1,2 | 1 888 |
ADU | 3 | 14,13,8 | 7,4 | 3 584 |
MAG | 3 | 9,5,5 | 1,5 | 7 680 |
ELE | 1 | 6 | 4,8 | 4 608 |
SKI | 2 | 3,2 | 9,8 | 21 504 |
SEI | 2 | 9,5 | 4,3 | 32 |
PAG | 1 | 4 | 5,6,2,3,7 | 512 |
THY | 2 | 13,9 | 5,8,4 | 704 |
MBO | 2 | 10,2 | 3,7 | 10 240 |
Table 6
Classification accuracy of comparison experiments between FR-DFC and classic classifiers
分类器 | RF | GSVM | MLP | TSK-0 | TSK-1 | SF-DNN | HFF-DNN | FR-DFC |
---|---|---|---|---|---|---|---|---|
KDD | 98.4±0.1 | 99.9±0.0 | 98.8±0.0 | 44.1±3.9 | 50.4±2.1 | 98.9±0.1 | 98.2±0.0 | 99.9±0.0 |
MUK | 89.7±0.5 | 94.3±0.4 | 98.5±0.3 | 61.7±6.5 | 76.1±6.1 | 97.7±0.7 | 97.8±0.6 | 98.8±0.6 |
MUM | 99.7±0.3 | 100.0±0.0 | 100.0±0.0 | 78.8±28.7 | 98.4±1.5 | 100.0±0.0 | 99.9±0.1 | 100.0±0.0 |
ADU | 82.2±0.3 | 83.7±0.3 | 84.2±0.0 | 74.7±0.2 | 76.4±0.2 | 83.5±0.1 | 84.3±0.1 | 84.9±0.2 |
MAG | 79.0±1.4 | 85.4±0.1 | 86.0±0.7 | 75.1±0.6 | 76.4±0.5 | 83.1±0.5 | 84.5±0.6 | 86.5±1.1 |
ELE | 77.6±0.4 | 79.4±0.0 | 78.9±0.1 | 61.5±0.2 | 69.8±0.2 | 76.1±0.5 | 77.0±0.3 | 80.1±1.0 |
SKI | 98.9±0.1 | 99.5±0.0 | 99.7±0.1 | 79.5±0.3 | 90.4±0.4 | 98.0±0.0 | 98.4±0.1 | 99.7±0.1 |
SEI | 93.1±0.1 | 93.1±0.1 | 93.1±0.1 | 91.4±0.1 | 92.7±2.0 | 93.4±0.1 | 93.4±0.1 | 93.4±0.0 |
PAG | 95.6±0.2 | 94.5±0.3 | 93.6±0.4 | 85.3±0.7 | 90.2±0.7 | 93.4±0.8 | 93.6±0.1 | 96.3±0.0 |
THY | 93.0±0.4 | 93.8±0.0 | 95.7±0.2 | 93.2±1.1 | 93.4±0.4 | 95.3±1.0 | 96.8±1.3 | 97.8±0.2 |
MBO | 84.3±0.6 | 87.7±0.2 | 82.1±0.8 | 80.1±0.1 | 83.4±0.3 | 84.1±0.1 | 86.4±1.4 | 91.8±0.3 |
Table 8
Classification accuracy of comparison experiments between FR-DFC, DSA-FC, FAT-DSA-FC, and DFRBCS %
分类器 | DSA-FC | FAT-DSA-FC | DFRBCS | FR-DFC |
---|---|---|---|---|
KDD | 63.2±0.7 | 63.1±0.5 | — | 99.1±0.3 |
MUK | 92.3±0.2 | 91.6±0.4 | — | 97.1±1.6 |
MUM | 100.0±0.0 | — | 99.7±0.2 | 100.0±0.0 |
ADU | 92.7±0.1 | 93.1±0.1 | — | 86.7±0.5 |
MAG | 83.5±0.1 | — | 83.9±0.9 | 84.8±1.3 |
SKI | 93.8±0.0 | 93.7±0.0 | — | 99.1±0.4 |
SEI | 94.7±0.1 | — | 93.4±0.0 | 93.4±0.0 |
PAG | 93.5±0.3 | — | 94.9±1.0 | 96.6±0.8 |
THY | 94.4±0.1 | — | 95.5±0.6 | 98.3±0.4 |
1 | Roberts D A, Yaida S, Hanin B. The Principles of Deep Learning Theory: An Effective Theory Approach to Understanding Neural Networks[M]. Cambridge: Cambridge University Press, 2022. |
2 | 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14( 1): 1- 19. |
Hu Yue, Luo Dongyang, Hua Kui, et al. Overview on Deep Learning[J]. CAAI Transactions on Intelligent Systems, 2019, 14( 1): 1- 19. | |
3 | 杨祯山, 岳文姣. 基于FCM聚类模糊神经网络的电梯交通模式识别[J]. 系统仿真学报, 2018, 30( 4): 1433- 1438, 1447. |
Yang Zhenshan, Yue Wenjiao. Elevator Traffic Pattern Recognition with FCM Clustering Based Fuzzy Neural Network[J]. Journal of System Simulation, 2018, 30( 4): 1433- 1438, 1447. | |
4 | 冯国亮, 卢伟, 杨建华. 用于时间序列数据建模的多模态模糊认知图[J]. 系统仿真学报, 2022, 34( 3): 543- 554. |
Feng Guoliang, Lu Wei, Yang Jianhua. Modeling Time Series Using Multi-modality Fuzzy Cognitive Maps[J]. Journal of System Simulation, 2022, 34( 3): 543- 554. | |
5 | Yazdanbakhsh O, Dick S. A Deep Neuro-fuzzy Network for Image Classification[EB/OL]. ( 2019-12-22) [ 2023-01-29]. . |
6 | Wang Guanjin, Zhou Ta, Choi K S, et al. A Deep-ensemble-level-based Interpretable Takagi-sugeno-kang Fuzzy Classifier for Imbalanced Data[J]. IEEE Transactions on Cybernetics, 2022, 52( 5): 3805- 3818. |
7 | Zhou Ta, Wang Guanjin, Choi K S, et al. Recognition of Sleep-wake Stages by Deep Takagi-sugeno-kang Fuzzy Classifier with Random Rule Heritage[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7( 5): 1458- 1469. |
8 | Zhao Tao, Cao Hongyi, Songyi Dian. A Self-organized Method for a Hierarchical Fuzzy Logic System Based on a Fuzzy Autoencoder[J]. IEEE Transactions on Fuzzy Systems, 2022, 30( 12): 5104- 5115. |
9 | Chen Yang, Yang Jiaxiu, Li Chenxi. Design of Takagi Sugeno Kang Type Interval Type-2 Fuzzy Logic Systems Optimized with Hybrid Algorithms[J]. International Journal of Fuzzy Systems, 2023, 25( 2): 868- 879. |
10 | Zhai Yanwei, Zheng Lü, Zhao Jun, et al. Data-driven Inference Modeling Based on an On-line Wang-mendel Fuzzy Approach[J]. Information Sciences, 2021, 551: 113- 127. |
11 | Zhou Ta, Chung F L, Wang Shitong. Deep TSK Fuzzy Classifier with Stacked Generalization and Triplely Concise Interpretability Guarantee for Large Data[J]. IEEE Transactions on Fuzzy Systems, 2017, 25( 5): 1207- 1221. |
12 | Zhang Yuanpeng, Ishibuchi Hisao, Wang Shitong. Deep Takagi-sugeno-kang Fuzzy Classifier with Shared Linguistic Fuzzy Rules[J]. IEEE Transactions on Fuzzy Systems, 2018, 26( 3): 1535- 1549. |
13 | Qin Bin, Nojima Yusuke, Ishibuchi Hisao, et al. Realizing Deep High-order TSK Fuzzy Classifier by Ensembling Interpretable Zero-order TSK Fuzzy Subclassifiers[J]. IEEE Transactions on Fuzzy Systems, 2021, 29( 11): 3441- 3455. |
14 | Gu Suhang, Chung F L, Wang Shitong. A Novel Deep Fuzzy Classifier by Stacking Adversarial Interpretable TSK Fuzzy Sub-classifiers with Smooth Gradient Information[J]. IEEE Transactions on Fuzzy Systems, 2020, 28( 7): 1369- 1382. |
15 | Wang Yuangang, Liu Haoran, Jia Wenjuan, et al. Deep Fuzzy Rule-based Classification System with Improved Wang-mendel Method[J]. IEEE Transactions on Fuzzy Systems, 2022, 30( 8): 2957- 2970. |
16 | Yin Rui, Pan Xuejun, Zhang Liyong, et al. A Rule-based Deep Fuzzy System with Nonlinear Fuzzy Feature Transform for Data Classification[J]. Information Sciences, 2023, 633: 431- 452. |
17 | Yong Hongwei, Huang Jianqiang, Meng Deyu, et al. Momentum Batch Normalization for Deep Learning with Small Batch Size[C]// Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 224- 240. |
18 | Bergstra J, Bengio Y. Random Search for Hyper-parameter Optimization[J]. The Journal of Machine Learning Research, 2012, 13( 1): 281- 305. |
19 | Wu Dongrui, Yuan Ye, Huang Jian, et al. Optimize TSK Fuzzy Systems for Regression Problems: Minibatch Gradient Descent with Regularization, DropRule, and AdaBound (MBGD-RDA)[J]. IEEE Transactions on Fuzzy Systems, 2020, 28( 5): 1003- 1015. |
20 | Genuer R, Poggi J M, Genuer R, et al. Random Forests[M]. [ S.l.]: Springer International Publishing, 2020. |
21 | Elen Abdullah, Baş Selçuk, Közkurt Cemil. An Adaptive Gaussian Kernel for Support Vector Machine[J]. Arabian Journal for Science and Engineering, 2022, 47( 8): 10579- 10588. |
22 | Specht D F. Probabilistic Neural Networks[J]. Neural Networks, 1990, 3( 1): 109- 118. |
23 | Zhou Shusen, Chen Qingcai, Wang Xiaolong. Fuzzy Deep Belief Networks for Semi-supervised Sentiment Classification[J]. Neurocomputing, 2014, 131: 312- 322. |
24 | Deng Yue, Ren Zhiquan, Kong Youyong, et al. A Hierarchical Fused Fuzzy Deep Neural Network for Data Classification[J]. IEEE Transactions on Fuzzy Systems, 2017, 25( 4): 1006- 1012. |
25 | Gu Suhang, Vong C M, Wong P K, et al. Fast Training of Adversarial Deep Fuzzy Classifier by Downsizing Fuzzy Rules with Gradient Guided Learning[J]. IEEE Transactions on Fuzzy Systems, 2022, 30( 6): 1967- 1980. |
[1] | Wang Yuan, Xu Lin, Gong Xiaoze, Zhang Yongliang, Wang Yongli. Gradient-based Deep Reinforcement Learning Interpretation Methods [J]. Journal of System Simulation, 2024, 36(5): 1130-1140. |
[2] | Fei Jiajie, Wu Dinghui, Fan Junyan, Wang Jing. Prediction of Converter Gas Generation Based on Intermission Production Improved Elman [J]. Journal of System Simulation, 2024, 36(5): 1179-1188. |
[3] | An Jing, Si Guangya, Zeng Miaoting. Construction of Surrogate Model Driven by Model and Data [J]. Journal of System Simulation, 2024, 36(3): 756-769. |
[4] | Xiaojuan Ning, Chunxu Li, Jiahao Wang, Jing Tang, Yinghui Wang, Haiyan Jin. Point Cloud Surface Matching Method Based on Precise Matching of Critical Point [J]. Journal of System Simulation, 2023, 35(6): 1169-1182. |
[5] | Na Ma, Tingxin Wen, Xu Jia, Xiaohui Li. Cross-domain Text Sentiment Classification Based on Auxiliary Classification Networks [J]. Journal of System Simulation, 2023, 35(4): 721-733. |
[6] | Fengwei Yang, Peng Chen, Kai Xi, Hualin Pu, Xueyin Liu. Online Classification Method for Motor Imagery EEG with Spatial Information [J]. Journal of System Simulation, 2023, 35(2): 254-267. |
[7] | Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network [J]. Journal of System Simulation, 2023, 35(2): 308-317. |
[8] | Tao Wang, Yingnian Wu, Rui Yang, Yueying Sun. Research on Real-time Gesture Classification Algorithm Based on IMU and sEMG Mixed Signals [J]. Journal of System Simulation, 2023, 35(2): 359-371. |
[9] | Jing Zheng, Weili Xiong, Xiaodong Wu. kNN Fault Detection Based on Reconstruction Error and Multi-block Modeling Strategy [J]. Journal of System Simulation, 2023, 35(1): 95-109. |
[10] | Jianfang Cao, Yiming Jia, Minmin Yan, Xiaodong Tian. Murals Super-resolution Reconstruction with the Stable Enhanced Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(5): 1076-1089. |
[11] | Lifeng Zhang, Huiren Wang. Image Reconstruction of Electrical Capacitance Tomography Based on Convolutional Neural Network and Finite Element Simulation [J]. Journal of System Simulation, 2022, 34(4): 712-718. |
[12] | Ningke Sun, Yan Wang, Zhicheng Ji. Anomaly Detection Method of Electrical Power Consumption Based on Deep Autoencoder [J]. Journal of System Simulation, 2022, 34(12): 2557-2565. |
[13] | Yitong Li, Xiaotao Liu, Jing Liu, Kai Wu. Weighted Local Complexity Invariance for Time Series Classification [J]. Journal of System Simulation, 2022, 34(10): 2194-2203. |
[14] | Weiguo Tong, Shichao Zeng, Lifeng Zhang, Zhe Hou, Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network [J]. Journal of System Simulation, 2022, 34(09): 2028-2036. |
[15] | Lifeng Zhang, Yu Miao. A High Resolution Reconstruction Method of Temperature Distribution in Acoustic Tomography [J]. Journal of System Simulation, 2022, 34(09): 2065-2073. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||