Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (10): 2194-2203.doi: 10.16182/j.issn1004731x.joss.21-0456
• Modeling Theory and Methodology • Previous Articles Next Articles
Yitong Li1(
), Xiaotao Liu1(
), Jing Liu1, Kai Wu2
Received:2021-05-21
Revised:2021-09-01
Online:2022-10-30
Published:2022-10-18
Contact:
Xiaotao Liu
E-mail:958933601@qq.com;xtliu@xidian.edu.cn
CLC Number:
Yitong Li, Xiaotao Liu, Jing Liu, Kai Wu. Weighted Local Complexity Invariance for Time Series Classification[J]. Journal of System Simulation, 2022, 34(10): 2194-2203.
Table 1
Classification results are based on ED and different complexity representation methods
| 数据集 | ED | CID | WLCID |
|---|---|---|---|
| Chinatown | 94.20 | 94.49 | 97.39 |
| BeetleFly | 75.00 | 70.00 | 80.00 |
| BirdChicken | 55.00 | 65.00 | 85.00 |
| FaceFour | 78.41 | 80.68 | 85.23 |
| ECG200 | 88.00 | 89.00 | 89.00 |
| Herring | 51.56 | 54.69 | 57.81 |
| Sony1 | 69.55 | 81.53 | 82.70 |
| DPOutlineCorrect | 71.74 | 71.38 | 74.28 |
| Rock | 64.00 | 66.00 | 70.00 |
| DSizeReduction | 93.46 | 93.46 | 94.12 |
| Fish | 78.29 | 78.29 | 82.86 |
| ECGFiveDays | 79.67 | 78.16 | 89.31 |
| Trace | 76.00 | 86.00 | 83.00 |
| MPTW | 51.30 | 50.00 | 51.30 |
| OSULeaf | 52.07 | 56.20 | 58.26 |
Table 2
Classification results are based on DTW and different complexity representation methods
| 数据集 | DTW | CID | WLCID |
|---|---|---|---|
| Chinatown | 95.36 | 95.07 | 96.52 |
| BeetleFly | 70.00 | 70.00 | 75.00 |
| BirdChicken | 75.00 | 75.00 | 80.00 |
| FaceFour | 84.09 | 87.50 | 90.91 |
| ECG200 | 80.00 | 80.00 | 89.00 |
| Herring | 54.69 | 54.69 | 57.81 |
| Sony1 | 71.21 | 81.86 | 81.03 |
| DPOutlineCorrect | 72.46 | 71.01 | 71.74 |
| Rock | 58.00 | 46.00 | 70.00 |
| DSizeReduction | 96.08 | 95.75 | 96.08 |
| Fish | 86.29 | 85.71 | 76.00 |
| ECGFiveDays | 77.47 | 78.98 | 84.20 |
| Trace | 99.00 | 99.00 | 99.00 |
| MPTW | 49.35 | 50.00 | 52.60 |
| OSULeaf | 63.64 | 66.12 | 61.57 |
Table 6
Clustering results based on WLCID and K-means algorithm
| 数据集 | ED | CID | WLCID |
|---|---|---|---|
| Chinatown | 71.01 | 71.59 | 72.46 |
| BeetleFly | 70.00 | 60.00 | 70.00 |
| BirdChicken | 60.00 | 50.00 | 65.00 |
| ECG200 | 73.00 | 75.00 | 78.00 |
| Herring | 59.38 | 59.38 | 50.00 |
| Coffee | 53.57 | 53.57 | 57.14 |
| Sony1 | 72.05 | 61.40 | 75.04 |
| DPOutlineCorrect | 61.59 | 60.14 | 60.87 |
| Yoga | 50.67 | 50.73 | 50.63 |
| GunPoint | 52.00 | 53.33 | 52.67 |
| 1 | Wang W, Shi Y, Luo R. Sparse Representation Based Approach to Prediction for Economic Time Series[J]. IEEE Access (S2169-3536), 2019, 7: 20614-20618. |
| 2 | Mehdiyev N, Lahann J, Emrich A, et al. Time Series Classification Using Deep Learning for Process Planning: A Case from the Process Industry[J]. Procedia Computer Science(S1877-0509), 2017, 114: 242-249. |
| 3 | Catley C, Stratti H, Mcgregor C. Multi-Dimensional Temporal Abstraction and Data Mining of Medical Time Series Data: Trends and Challenges[J]. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference (S1558-4615), 2017, 2008: 4322-4325. |
| 4 | Gasparrini A, Armstrong B, Kenward M G. Dlnm: Distributed Lag Non-Linear Models[J]. Statistics in Medicine (S1097-0258), 2017, 29(21): 2224-2234. |
| 5 | Shen F, Liu J, Wu K. Multivariate Time Series Forecasting Based on Elastic Net and High-Order Fuzzy Cognitive Maps: A Case Study on Human Action Prediction through EEG Signals[J]. IEEE Transactions on Fuzzy Systems (S1941-0034), 2020, 29(8): 2336-2348. |
| 6 | 刘文法, 王旭, 张建邦. 基于LS-SVM的装备需求时间序列预测[J]. 弹箭与制导学报, 2006, 26(1): 780-783. |
| Liu Wenfa, Wang Xu, Zhang Jianbang. Time Series Prediction of Equipment Demand Based on LS-SVM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 780-783. | |
| 7 | Bagnall A, Lines J, Bostrom A, et al. The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[J]. Data Mining and Knowledge Discovery (S1384-5810), 2017, 31(3): 606-660. |
| 8 | Gong Z, Chen H, Yuan B, et al. Multiobjective Learning in the Model Space for Time Series Classification[J]. IEEE Transactions on Cybernetics (S2168-2275), 2019, 49(3): 918-932. |
| 9 | Fawaz H I, Forestier G, Weber J, et al. Deep Learning for Time Series Classification: A Review[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33(4): 917-963. |
| 10 | Abanda A, Mori U, Lozano J A. A Review on Distance Based Time Series Classification[J]. Data Mining and Knowledge Discovery (S1384-5810), 2019, 33: 378-412. |
| 11 | Górecki Tomasz, Łuczak Maciej. Using Derivatives in Time Series Classification[J]. Communications in Statistics: Simulation and Computation(S0361-0918), 2013, 26(2): 310-331. |
| 12 | Jeong Y S, Jeong M K, Omitaomu O A. Weighted Dynamic Time Warping for Time Series Classification[J]. Pattern Recognition (S0031-3203), 2011, 44(9): 2231-2240. |
| 13 | Kate, Rohit J. Using Dynamic Time Warping Distances as Features for Improved Time Series Classification[J]. Data Mining and Knowledge Discovery(S1384-5810), 2016, 30(2): 283-312. |
| 14 | Marteau, Pierre-François. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S1939-3539), 2008, 31(2): 306-318. |
| 15 | Stefan A, Athitsos V, Das G. The Move-Split-Merge Metric for Time Series[J]. IEEE Transactions on Knowledge and Data Engineering(S1041-4347), 2013, 25(6): 1425-1438. |
| 16 | Batista G, Keogh E J, Tataw O M, et al. CID: An Efficient Complexity-Invariant Distance for Time Series[J]. Data Mining and Knowledge Discovery (S1384-5810), 2014, 28(3): 634-669. |
| 17 | Amato F, Laib M, Guignard F, et al. Analysis of Air Pollution Time Series Using Complexity-Invariant Distance and Information Measures[J]. Physica A: Statistical Mechanics and its Applications(S0378-4371), 2020, 547: 124391. |
| 18 | Zhao X, Ji M, Zhang N, et al. Permutation Transition Entropy: Measuring the Dynamical Complexity of Financial Time Series[J]. Chaos Solitons & Fractals (S0960-0779), 2020, 139: 109962. |
| 19 | Biswal B, Biswal M, Hasan S, et al. Nonstationary Power Signal Time Series Data Classification Using LVQ Classifier[J]. Applied Soft Computing (S1568-4946), 2014, 18: 158-166. |
| 20 | Whelen T, Siqueira P. Time-Series Classification of Sentinel-1 Agricultural Data over North Dakota[J]. Remote Sensing Letters (S2150-704X), 2018, 9(5): 411-420. |
| 21 | Calegari G R, Carlino E, Peroni D, et al. Filtering and Windowing Mobile Traffic Time Series for Territorial Land Use Classification[J]. Computer Communications (S0140-3664), 2016, 95(1): 15-28. |
| 22 | Dau, Anh H, Bagnall A, et al. The UCR Time Series Archive[J]. IEEE/CAA Journal of Automatica Sinica (S2329-9266), 2019(6): 1293-1305. |
| [1] | Huang Tao, Zhang Zhi, Ding Yujie, Chen Yanbo, Wang Jing, Zhang Wenqian. Robust Emergency Dispatch Method Considering Dynamic Frequency Security and N-k Contingency [J]. Journal of System Simulation, 2025, 37(12): 2981-2993. |
| [2] | Zhang Runzhao, Chen Yanbo, Huang Tao, Tian Haoxin, Qiang Tuben, Zhang Zhi. Scheduling Method for Virtual Power Plants Based on Analysis and Forecasting of Heterogeneous Load Characteristics [J]. Journal of System Simulation, 2025, 37(12): 2994-3006. |
| [3] | Yu Xiangxing, Zhao Yandong, Zhang Baolin. Vibration Control of Offshore Wind Turbine Towers Based on Eddy Current Nonlinear Energy Sink [J]. Journal of System Simulation, 2025, 37(12): 3007-3017. |
| [4] | Li Bin, Wang Yuchuo. Fault Diagnosis Method for Photovoltaic Systems Based on Multi-strategy Fusion [J]. Journal of System Simulation, 2025, 37(12): 3018-3032. |
| [5] | Li Xiaobin, Hu Bing, Yin Chao, Li Bo, Ma Jun. Spatiotemporal Graph Convolution-based Demand Forecasting and Simulation Analysis for Automotive Parts Supply Chain [J]. Journal of System Simulation, 2025, 37(12): 3060-3074. |
| [6] | Peng Yi, Lei Yunkui, Yang Qingqing, Li Hui, Wang Jianming. Improved PID Search Algorithm for UAV Path Planning in Mountainous Environments [J]. Journal of System Simulation, 2025, 37(12): 3075-3086. |
| [7] | Chen Yi, Qiu Sihang, Zhu Zhengqiu, Ji Yatai, Zhao Yong, Ju Rusheng. A Method of Heuristic Human-LLM Collaborative Source Search [J]. Journal of System Simulation, 2025, 37(12): 3112-3127. |
| [8] | Suo Jingyi, Lu Baihong, Qu Che. Measurement of Luminous Intensity Distribution for Film and Television LED Light Sources and Its Simulation Research in Game Engines [J]. Journal of System Simulation, 2025, 37(12): 3140-3151. |
| [9] | Gong Jianxing, Hu Hai, Ren Haihui, Wu Ruixiang. Interoperability Model and Application of Military Training System for Combination of Virtuality and Reality [J]. Journal of System Simulation, 2025, 37(12): 3161-3175. |
| [10] | Xu Zhixia, Wang Rui, Sun Nan, He Bing, Shen Xiaowei, Zhu Xiaofei. Research on Cooperative Interference Allocation of Jamming Resources Based on Improved Genetic Algorithm [J]. Journal of System Simulation, 2025, 37(12): 3176-3189. |
| [11] | Liu Xiang, Jin Qiankun. Research on PAC-Bayes-Based A2C Algorithm for Multi-objective Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(12): 3212-3223. |
| [12] | Yang Lanying, Li Chao, Zou Haifeng, Wan Jiangtao, Zhang Renqiang, Liu Hui, Lu Hong. Robot Path Planning Optimization Based on Fusion of Improved Ant Colony Algorithm and A* Algorithm [J]. Journal of System Simulation, 2025, 37(11): 2956-2965. |
| [13] | Su Xiaoting, Zhang Xiaowei, Tian Yi, Li Qi, Wang Shuaihao. Research on Time Sequence Design Method of Dynamic Simulation Scene for Starlight Navigation [J]. Journal of System Simulation, 2025, 37(11): 2946-2955. |
| [14] | Zhang Zhili, Liu Jin, Zhou Zhaofa, Liang Zhe, Zhang Yunhao. Research on Temperature Compensation Technology of Fiber Optic Gyroscope based on ISCSO-BP Neural Network Model [J]. Journal of System Simulation, 2025, 37(11): 2904-2917. |
| [15] | Chen Jitong, Zhou Jiajia, Wu Di, Jiang Hailong. A USV Path Planning Algorithm under Special Environment Based on TD3-RRT [J]. Journal of System Simulation, 2025, 37(11): 2888-2903. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||