Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (11): 2333-2344.doi: 10.16182/j.issn1004731x.joss.22-0690
• Papers • Previous Articles Next Articles
Zhao Weiping1,2(), Chen Yu2(
), Xiang Song1, Liu Yuanqiang1, Wang Chaoyue1
Received:
2022-06-17
Revised:
2022-08-16
Online:
2023-11-25
Published:
2023-11-24
Contact:
Chen Yu
E-mail:3370477370@qq.com;1009857106@qq.com
CLC Number:
Zhao Weiping, Chen Yu, Xiang Song, Liu Yuanqiang, Wang Chaoyue. Image Semantic Segmentation Algorithm Based on Improved DeepLabv3+[J]. Journal of System Simulation, 2023, 35(11): 2333-2344.
1 | Wang Lei, Wu Jiaji, Liu Xunyu, et al. Semantic Segmentation of Large-scale Point Clouds Based on Dilated Nearest Neighbors Graph[J]. Complex & Intelligent Systems, 2022, 8(5): 3833-3845. |
2 | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. |
Tian Xuan, Wang Liang, Ding Qi. Review of Image Semantic Segmentation Based on Deep Learning[J]. Journal of Software, 2019, 30(2): 440-468. | |
3 | Asgari Taghanaki S, Abhishek K, Cohen J P, et al. Deep Semantic Segmentation of Natural and Medical Images: A Review[J]. Artificial Intelligence Review, 2021, 54(1): 137-178. |
4 | Yuan Xiaohui, Shi Jianfang, Gu Lichuan. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery[J]. Expert Systems with Applications, 2021, 169: 114417. |
5 | 王奕清. 基于计算机视觉的卫星云图反演降水量方法研究[D]. 成都: 电子科技大学, 2021. |
Wang Yiqing. A Computer Vision Method for Precipitation Inversion With Satellite Cloud Images[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
6 | Ivanovs M, Ozols K, Dobrajs A, et al. Improving Semantic Segmentation of Urban Scenes for Self-driving Cars with Synthetic Images[J]. Sensors, 2022, 22(6): 2252. |
7 | Kontschieder P, Samuel Rota Bulò, Bischof H, et al. Structured Class-labels in Random Forests for Semantic Image Labelling[C]//2011 International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2011: 2190-2197. |
8 | Martijn van den Heuvel, Mandl R, Hulshoff Pol H. Normalized Cut Group Clustering of Resting-state FMRI Data[J]. PLoS One, 2008, 3(4): e2001. |
9 | Cherkassky V, Ma Yunqian. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks, 2004, 17(1): 113-126. |
10 | Hu Yaosi, Chen Zhenzhong, Lin Weiyao. RGB-D Semantic Segmentation: A Review[C]//2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Piscataway, NJ, USA: IEEE, 2018: 1-6. |
11 | Kamilaris A, Prenafeta-Boldú Francesc X. Deep Learning in Agriculture: A Survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
12 | 刘瑞军, 王向上, 张晨, 等. 基于深度学习的视觉SLAM综述[J]. 系统仿真学报, 2020, 32(7): 1244-1256. |
Liu Ruijun, Wang Xiangshang, Zhang Chen, et al. A Survey on Visual SLAM Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(7): 1244-1256. | |
13 | 罗荣, 王亮, 肖玉杰. 深度学习技术应用现状分析与发展趋势研究[J]. 计算机教育, 2019(10): 19-22. |
14 | Yu Changqian, Wang Jingbo, Peng Chao, et al. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 334-349. |
15 | Zhang Fan, Chen Yanqin, Li Zhihang, et al. ACFNet: Attentional Class Feature Network for Semantic Segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 6797-6806. |
16 | Wu Tianyi, Tang Sheng, Zhang Rui, et al. CGNet: A Light-weight Context Guided Network for Semantic Segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. |
17 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Focal Learning on Stranger for Imbalanced Image Segmentation[J]. IET Image Processing, 2022, 16(5): 1305-1323. |
18 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Dynamically Balancing Class Losses in Imbalanced Deep Learning[J]. Electronics Letters, 2022, 58(5): 203-206. |
19 | Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440. |
20 | Guo Yanming, Liu Yu, Georgiou T, et al. A Review of Semantic Segmentation Using Deep Neural Networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2): 87-93. |
21 | Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
22 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
23 | Schönfeld Edgar, Schiele B, Khoreva A. A U-net Based Discriminator for Generative Adversarial Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 8204-8213. |
24 | Jaeger P F, Kohl S A A, Bickelhaupt S, et al. Retina U-net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection[C]//Proceedings of the Machine Learning for Health NeurIPS Workshop. Chia Laguna Resort, Sardinia, Italy: PMLR, 2020: 171-183. |
25 | Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation With Deep Convolutional Nets and Fully Connected CRFs[EB/OL]. (2016-06-07) [2022-05-30]. . |
26 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-05-30]. . |
27 | Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
28 | Chen L C, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[EB/OL]. (2017-12-05) [2022-05-30]. . |
29 | Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder With Atrous Separable Convolution for Semantic Image Segmentation[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 833-851. |
30 | Tan Mingxing, Le Q. EfficientNetV2: Smaller Models and Faster Training[C]//Proceedings of the 38th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2021: 10096-10106. |
31 | Tan Mingxing, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]//Proceedings of the 36th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2019: 6105-6114. |
32 | Hou Qibin, Zhang Li, Cheng Mingming, et al. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 4002-4011. |
33 | Liu Yichao, Shao Zongru, Teng Yueyang, et al. NAM: Normalization-based Attention Module[EB/OL]. (2021-11-24) [2022-05-30]. . |
34 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
35 | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[1] | Dong Qingqing, Wu Hao, Qian Wenhua, Kong Fengling. RGB-D Saliency Object Detection Based on Cross-refinement and Circular Attention [J]. Journal of System Simulation, 2023, 35(9): 1931-1947. |
[2] | Hao Yu, Jinxia Jiang, Xiaohan Lai, Feng Mei, Qing Wang. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network [J]. Journal of System Simulation, 2023, 35(7): 1572-1580. |
[3] | Yun Wei, Qi Luo, Yingzhi Zhao. Semantic Segmentation Model Based on Adaptive Fusion and Attention Refinement [J]. Journal of System Simulation, 2023, 35(6): 1226-1234. |
[4] | Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei. Multi-agent Cooperative Combat Simulation in Naval Battlefield with Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 786-796. |
[5] | Nan Xiang, Lu Wang, Chongliu Jia, Yuemou Jian, Xiaoxia Ma. Simulation of Occluded Pedestrian Detection Based on Improved YOLO [J]. Journal of System Simulation, 2023, 35(2): 286-299. |
[6] | Hong Sun, Yuxiang Zhang, Yuelan Ling. Research on Image Super-resolution Reconstruction Based on Loss Extraction Feedback Attention Network [J]. Journal of System Simulation, 2023, 35(2): 308-317. |
[7] | Weidong Jin, Shuli Zhang, Peng Tang, Man Zhang. Image Dehazing Network Based on Densely Connected Residual Block and Channel Pixel Attention [J]. Journal of System Simulation, 2022, 34(8): 1663-1673. |
[8] | Junjie Qiu, Hong Zheng, Yunhui Cheng. Research on Prediction of Model Based on Multi-scale LSTM [J]. Journal of System Simulation, 2022, 34(7): 1593-1604. |
[9] | Yin Wang, Feixiang Wang, Qianlai Sun. Vehicle Detection Method Based on Multi Scale Feature Fusion [J]. Journal of System Simulation, 2022, 34(6): 1219-1229. |
[10] | Qizong Shen, Chunyan Gao. Research on Semantic Segmentation of Natural Landform Based on Edge Detection Module [J]. Journal of System Simulation, 2022, 34(2): 293-302. |
[11] | Hong Sun, Yuelan Ling, Yuxiang Zhang. Research on Improved Feature Pyramid Algorithm Integrating Border Supervision Strategy [J]. Journal of System Simulation, 2022, 34(10): 2119-2129. |
[12] | Chen Lijia, Wang Kai, Li Shigang, Tian Yanfei. Fast Maritime Simulator Scene Modeling Method Based on Aerial Images [J]. Journal of System Simulation, 2021, 33(7): 1565-1573. |
[13] | Yin Shi, Hou Guolian, Chi Yan, Gong Linjuan, Hu Xiaodong. Prediction Method for Health Degree of Front Bearing of Wind Turbine Generator and Implementation [J]. Journal of System Simulation, 2021, 33(6): 1323-1333. |
[14] | Yang Weilong, Xu Kai, Xie Xu, Sun Lin. Research on CGF-oriented Virtual Human Perceptual Attention Model [J]. Journal of System Simulation, 2021, 33(2): 262-270. |
[15] | Kong Yisi, Hu Xiaofeng, Zhu Feng, Tao Jiuyang. Attention Mechanism in Battlefield Situation Awareness [J]. Journal of System Simulation, 2017, 29(10): 2233-2241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||