Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (5): 1090-1100.doi: 10.16182/j.issn1004731x.joss.20-0994
• Modeling Theory and Methodology • Previous Articles Next Articles
Bingshan Hu1,2(), Ke Cheng1, Sheng Lu1, Hongliu Yu1,2
Received:
2020-12-11
Revised:
2021-01-25
Online:
2022-05-18
Published:
2022-05-25
CLC Number:
Bingshan Hu, Ke Cheng, Sheng Lu, Hongliu Yu. Design of Variable Stiffness Energy Storage Walking Assist Hip Exoskeleton and Simulation of Assistance Effect[J]. Journal of System Simulation, 2022, 34(5): 1090-1100.
[1] | Lovrenovic Z, Doumit M. Development and Testing of a Passive Walking Assist Exoskeleton[J]. Biocybernetics and Biomedical Engineering (S0208-5216), 2019, 39(4): 992-1004. |
[2] | 韩亚丽, 王兴松. 下肢助力外骨骼的动力学分析及仿真[J]. 系统仿真学报, 2013, 25(1): 61-67. |
Han Yali, Wang Xingsong. Dynamic Analysis and Simulation of Lower Limb Power-Assisted Exoskeleton[J]. Journal of System Simulation, 2013, 25(1): 61-67. | |
[3] | Zoss A B, Kazerooni H, Chu A. Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 2006, 11(2): 128-138. |
[4] | Esquenazi A, Talaty M, Packel A, et al. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury[J]. American Journal of Physical Medicine & Rehabilitation (S0894-9115), 2012, 91(11): 911-921. |
[5] | Suzuki K, Mito G, Kawamoto H, et al. Intention-Based Walking Support for Paraplegia Patients with Robot Suit HAL[J]. Advanced Robotics (S0169-1864), 2007, 21(12): 1441-1469. |
[6] | Chang Y H, Zhang J W, Chen K, et al. Design and Preliminary Evaluation of a Clutch-Spring Lower Limb Exoskeleton[C]//2019 5th International Conference on Control, Automation and Robotics. Beijing: IEEE, 2019: 788-792. |
[7] | Walsh C J, Endo K, Herr H. A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation[J]. International Journal of Humanoid Robotics (S0219-8436), 2007, 4(3): 487-506. |
[8] | Shen Z F, Sam S, Allison G, et al. A Simulation-Based Study on a Clutch-Spring Mechanism Reducing Human Walking Metabolic Cost[J]. International Journal of Mechanical Engineering and Robotics Research (S2278-0149), 2018, 7(1): 55-60. |
[9] | Haufe F L, Wolf P, Riener R, et al. Biomechanical Effects of Passive Hip Springs During Walking[J]. Journal of Biomechanics (S0021-9290), 2020, 98: 109432. |
[10] | Barazesh H, Sharbafi M A. A Biarticular Passive Exosuit to Support Balance Control can Reduce Metabolic Cost of Walking[J]. Bioinspiration & Biomimetics (S1748-3182), 2020, 15(3): 036009. |
[11] | Zhou L B, Chen W H, Chen W J, et al. Design of a Passive Lower Limb Exoskeleton for Walking Assistance with Gravity Compensation[J]. Mechanism and Machine Theory (S0094-114X), 2020, 150: 103840. |
[12] | Chen W, Wu S, Zhou T, et al. On the Biological Mechanics and Energetics of the Hip Joint Muscle–Tendon System Assisted by Passive Hip Exoskeleton[J]. Bioinspiration & Biomimetics (S1748-3182), 2018, 14: 016012. |
[13] | Levesque L, Doumit M. Study of Human-Machine Physical Interface for Wearable Mobility Assist Devices[J]. Medical Engineering & Physics (S1350-4533), 2020, 80(5): 33-43. |
[14] | Kumar S, Zwall M, Bolivar N E, et al. Extremum Seeking Control for Stiffness Auto-Tuning of a Quasi-Passive Ankle Exoskeleton[J]. IEEE Robotics and Automation Letters (S2377-3766), 2020, 5(3): 4604-4611. |
[15] | Bovi G, Rabuffetti M, Mazzoleni P, et al. A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects[J]. Gait & Posture (S0966-6362), 2011, 33(1): 6-13. |
[16] | Collins S H, Wiggin M B, Sawicki G S. Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton[J]. Nature (S0028-0836), 2015, 522(7555): 212-215. |
[17] | Panizzolo F A, Bolgiani C, Liddo L D, et al. Reducing the Energy Cost of Walking in Older Adults using a Passive Hip Flexion Device[J]. Journal of NeuroEngineering and Rehabilitation (S1743-0003), 2019, 16(1): 1-9. |
[18] | Dembia C L, Silder A, Uchida T K et al. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Walking with Heavy Loads[J]. PLoS One (S1932-6203). 2017, 12(7): e0180320. |
[19] | Browne M G, Franz J R. More Push from Your Push-off: Joint-Level Modifications to Modulate Propulsive Forces in Old Age[J]. PLoS One (S1932-6203). 2018, 13(8): e0201407. |
[20] | Sun J T, Guo Z, Sun D Y, et al. Design, Modeling and Control of a Novel Compact, Energy-Efficient, and Rotational Serial Variable Stiffness Actuator (SVSA-II)[J]. Mechanism and Machine Theory (S0094-114X), 2018, 130: 123-136. |
[21] | Wolf S, Eiberger O, Hirzinger G. The DLR FSJ: Energy Based Design of a Variable Stiffness Joint[C]//IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 5082-5089. |
[22] | Jafari A, Tsagarakis N G. A New Actuator with Adjustable Stiffness Based on a Variable Ratio Lever Mechanism[J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 2014, 19(1): 55-63. |
[23] | Maryam K, Mehdi E, Mohsen Z. Human-Exoskeleton Control Simulation, Kinetic and Kinematic Modeling and Parameters Extraction[J]. Methods X (S2215-0161), 2019, 6: 1838-1846. |
[1] | Qiming Qi, Ruigang Fu, Ping Wang, Min Wang, Hongqi Fan. Design of Optical Compound Eye Simulation Software for Small Aircraft Applications [J]. Journal of System Simulation, 2022, 34(9): 1999-2008. |
[2] | Yiting Zhu, Yun Yan, Zhaocheng He. Mesoscopic Modeling and Simulation of Mixed Traffic Flow of Buses and Vehicles [J]. Journal of System Simulation, 2022, 34(9): 2019-2027. |
[3] | Junjie Sheng, Zhao Tang, Shaodi Dong, Shuyang Wu, Hao Liang. Architecture Design and Prototype Verification of Railway Vehicle Dynamics Cloud Platform [J]. Journal of System Simulation, 2022, 34(9): 2056-2064. |
[4] | Wen Zheng, Zhe Zhang, Jingyi Zhu. Simulation of the Market Exclusive Competition between Platforms [J]. Journal of System Simulation, 2022, 34(9): 2098-2106. |
[5] | Jingsi Yang, Tianyu Huang, Gangyi Ding, Lijie Li, Peng Li. Parallel Live Performance Simulation Based on a Multidimensional Hierarchy and Application [J]. Journal of System Simulation, 2022, 34(8): 1750-1761. |
[6] | Kan Li, Yunpeng Li, Jiangbo Zhao. Design and Implementation of UAV Swarm Self-organizing Search Model [J]. Journal of System Simulation, 2022, 34(8): 1820-1833. |
[7] | Jianlei Liu, Xuejian Jiao, Huaiqian Wang. Development of Vehicle Dynamics Virtual Simulation System Based on CarSim [J]. Journal of System Simulation, 2022, 34(8): 1847-1854. |
[8] | Yingyan Zhao, Qunsheng Cao, Zhengnan Cao, Jianchun Wang. Realization of Domestic Ship Hydrodynamic Numerical Software on Industrial Cloud Platform [J]. Journal of System Simulation, 2022, 34(8): 1855-1863. |
[9] | Aibin Chen, Fubo Ding, Guoxiong Zhou, Bo Zhou. Simulation Model of Forest Fire Spread Based on Swarm Intelligence [J]. Journal of System Simulation, 2022, 34(7): 1439-1448. |
[10] | Zheng Yang, Zhimin Xiang, Shiwen Ma. A Method of Loose Coupling Entity Modeling Based on Variable Rules [J]. Journal of System Simulation, 2022, 34(7): 1506-1511. |
[11] | Jun Ma, Jingyu Yang, Xi Wu. Transfer Method of Operational Simulation Experiment Scope Using Compromised Case-Based Reasoning [J]. Journal of System Simulation, 2022, 34(7): 1568-1581. |
[12] | Wei Chen, Zongping Li, Can Liu, Yanni Ju. Research on the Number of Passengers on the Platform of Rail Transit Station Considering Congestion Propagation [J]. Journal of System Simulation, 2022, 34(7): 1582-1592. |
[13] | Xunyun Liu, Xinhai Xu, Chengzhang Zhu, Hao Li, Lei Zeng. Ultra-Real-Time Visual Simulation System for Multi-View Rendering Tasks [J]. Journal of System Simulation, 2022, 34(7): 1619-1628. |
[14] | Miao Yu, Manru Li, Yu Zhao. Joint Shift Scheduling Method for Call Center with Mechanism of Delay Information [J]. Journal of System Simulation, 2022, 34(7): 1651-1661. |
[15] | Miaojia Lu, Chengyuan Huang, Jing Teng. Multi-agent Simulation for Online Fresh Food Autonomous Delivery [J]. Journal of System Simulation, 2022, 34(6): 1185-1195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||