Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (8): 2004-2015.doi: 10.16182/j.issn1004731x.joss.24-0282
• Papers • Previous Articles
Li Lifen1,4, Zhang Jinyue1,4, Cao Wangbin2,3, Mei Huawei1,5
Received:
2024-03-25
Revised:
2024-05-08
Online:
2025-08-20
Published:
2025-08-26
Contact:
Cao Wangbin
CLC Number:
Li Lifen, Zhang Jinyue, Cao Wangbin, Mei Huawei. Short-term Load Forecasting Based on Dual-attention Temporal Convolutional Long Short-term Memory Network[J]. Journal of System Simulation, 2025, 37(8): 2004-2015.
Table 2
Evaluation metrics of each algorithm
数据集 | 模型 | MAPE/% | RMSE/MW | MAE/MW | R2 |
---|---|---|---|---|---|
NH | LSTM | 1.60 | 28.74 | 21.31 | 0.991 2 |
GRU | 1.62 | 30.58 | 22.41 | 0.990 0 | |
XGBoost | 1.61 | 30.37 | 22.26 | 0.990 2 | |
SVR | 1.81 | 33.02 | 25.00 | 0.988 4 | |
DA-TCLSNet | 0.91 | 17.96 | 12.70 | 0.996 5 | |
SEMASS | LSTM | 1.33 | 32.98 | 24.52 | 0.993 8 |
GRU | 1.32 | 33.46 | 24.24 | 0.993 6 | |
XGBoost | 1.82 | 43.72 | 32.29 | 0.989 1 | |
SVR | 1.52 | 34.76 | 27.54 | 0.993 1 | |
DA-TCLSNet | 0.99 | 26.58 | 18.32 | 0.996 0 | |
Panama | LSTM | 2.31 | 32.88 | 23.86 | 0.963 5 |
GRU | 2.31 | 32.33 | 23.94 | 0.964 7 | |
XGBoost | 2.26 | 31.35 | 23.83 | 0.966 8 | |
SVR | 2.42 | 32.70 | 24.67 | 0.963 9 | |
DA-TCLSNet | 1.81 | 26.00 | 18.92 | 0.977 2 |
Table 3
Evaluation results of partial sequences in NH test set
数据类型 | 模型 | MAPE/% | RMSE/MW | MAE/MW | R2 |
---|---|---|---|---|---|
平稳序列 | LSTM | 1.57 | 26.57 | 19.29 | 0.987 1 |
GRU | 1.70 | 29.73 | 21.37 | 0.983 8 | |
XGBoost | 1.47 | 23.97 | 18.27 | 0.989 5 | |
SVR | 1.42 | 22.79 | 17.79 | 0.990 5 | |
DA-TCLSNet | 0.86 | 15.24 | 10.93 | 0.995 8 | |
波动序列 | LSTM | 1.72 | 31.98 | 23.64 | 0.987 6 |
GRU | 1.59 | 30.87 | 22.24 | 0.988 4 | |
XGBoost | 1.71 | 34.62 | 24.19 | 0.985 4 | |
SVR | 2.21 | 40.73 | 30.57 | 0.979 8 | |
DA-TCLSNet | 0.82 | 16.56 | 11.54 | 0.996 7 |
Table 4
Evaluation results of partial sequences in SEMASS test set
数据类型 | 模型 | MAPE/% | RMSE/MW | MAE/MW | R2 |
---|---|---|---|---|---|
平稳序列 | LSTM | 1.36 | 32.82 | 23.61 | 0.990 7 |
GRU | 1.31 | 32.39 | 22.83 | 0.990 9 | |
XGBoost | 1.82 | 38.01 | 30.28 | 0.987 5 | |
SVR | 1.54 | 32.34 | 27.09 | 0.990 9 | |
DA-TCLSNet | 0.89 | 21.93 | 15.45 | 0.995 8 | |
波动序列 | LSTM | 1.38 | 35.15 | 25.22 | 0.993 2 |
GRU | 1.43 | 35.70 | 25.74 | 0.993 0 | |
XGBoost | 2.41 | 53.42 | 42.07 | 0.984 3 | |
SVR | 1.70 | 38.73 | 29.62 | 0.991 8 | |
DA-TCLSNet | 1.20 | 29.97 | 22.21 | 0.995 1 |
Table 6
Evaluation metrics of ablation experiment
数据集 | 模型 | MAPE/% | RMSE/MW | MAE/MW | R2 |
---|---|---|---|---|---|
NH | no-Sparse | 1.33 | 23.47 | 17.52 | 0.994 1 |
no-TPA | 1.17 | 22.71 | 16.37 | 0.994 5 | |
no-LSTM | 1.51 | 26.73 | 20.05 | 0.992 4 | |
no-TCN | 1.33 | 25.23 | 18.14 | 0.993 2 | |
no-MIC | 1.15 | 22.73 | 15.51 | 0.994 5 | |
DA-TCLSNet | 0.91 | 17.96 | 12.69 | 0.996 5 | |
SEMASS | no-Sparse | 1.19 | 30.96 | 22.31 | 0.994 5 |
no-TPA | 1.02 | 28.59 | 19.14 | 0.995 3 | |
no-LSTM | 1.33 | 35.51 | 24.86 | 0.992 8 | |
no-TCN | 1.41 | 36.16 | 25.76 | 0.992 5 | |
no-MIC | 1.19 | 32.61 | 22.18 | 0.993 9 | |
DA-TCLSNet | 0.99 | 26.58 | 18.32 | 0.996 0 | |
Panama | no-Sparse | 1.87 | 28.48 | 19.67 | 0.972 6 |
no-TPA | 1.89 | 27.46 | 19.63 | 0.974 6 | |
no-LSTM | 2.17 | 31.90 | 22.78 | 0.965 7 | |
no-TCN | 2.35 | 35.35 | 24.71 | 0.957 9 | |
no-MIC | 1.95 | 26.91 | 20.36 | 0.975 6 | |
DA-TCLSNet | 1.81 | 26.00 | 18.92 | 0.977 2 |
[1] | 韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43(22): 8569-8591. |
Han Fujia, Wang Xiaohui, Qiao Ji, et al. Review on Artificial Intelligence Based Load Forecasting Research for the New-type Power System[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8591. | |
[2] | 刘雨佳, 樊艳芳, 白雪岩, 等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J]. 电工技术学报, 2023, 38(12): 3277-3288. |
Liu Yujia, Fan Yanfang, Bai Xueyan, et al. Short-term Wind Power Prediction Based on Feature Crossover Mechanism and Error Compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3277-3288. | |
[3] | 乔石, 王磊, 张鹏超, 等. 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46(10): 3940-3951. |
Qiao Shi, Wang Lei, Zhang Pengchao, et al. Short-term Load Forecasting by Long-and Short-term Temporal Networks with Attention Based on Modal Decomposition[J]. Power System Technology, 2022, 46(10): 3940-3951. | |
[4] | Jiang Huaiguang, Zhang Yingchen, Muljadi E, et al. A Short-term and High-resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3341-3350. |
[5] | 孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2895. |
Sun Chao, Qi Lü, Zhu Sitong, et al. Ultra-short-term Power Load Forecasting Based on Two-layer XGBoost Algorithm Considering the Influence of Multiple Features[J]. High Voltage Engineering, 2021, 47(8): 2885-2895. | |
[6] | 臧海祥, 许瑞琦, 刘璟璇, 等. 基于多维融合特征和卷积神经网络的多任务用户短期负荷预测[J]. 电力系统自动化, 2023, 47(13): 69-77. |
Zang Haixiang, Xu Ruiqi, Liu Jingxuan, et al. Short-term Load Forecasting for Multi-task Consumers Based on Multi-dimensional Fusion Feature and Convolutional Neural Network[J]. Automation of Electric Power Systems, 2023, 47(13): 69-77. | |
[7] | Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]///Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[8] | Guo Yixiu, Li Yong, Qiao Xuebo, et al. BiLSTM Multitask Learning-based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3481-3492. |
[9] | Jayashankara M, Shah Priyansh, Sharma Anshul, et al. A Novel Approach for Short-term Energy Forecasting in Smart Buildings[J]. IEEE Sensors Journal, 2023, 23(5): 5307-5314. |
[10] | 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232. |
Liu Guohai, Sun Wenqing, Wu Zhenfei, et al. Short-term Photovoltaic Power Forecasting Based on Attention-GRU Model[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 226-232. | |
[11] | Imani Maryam. Electrical Load-temperature CNN for Residential Load Forecasting[J]. Energy, 2021, 227: 120480. |
[12] | 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799. |
Wang Chen, Wang Ying, Zheng Tao, et al. Multi-energy Load Forecasting in Integrated Energy System Based on ResNet-LSTM Network and Attention Mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1789-1799. | |
[13] | 王炜, 冯斌, 黄刚, 等. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43(23): 9072-9083. |
Wang Wei, Feng Bin, Huang Gang, et al. Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network[J]. Proceedings of the CSEE, 2023, 43(23): 9072-9083. | |
[14] | Dong Ming, Grumbach L. A Hybrid Distribution Feeder Long-term Load Forecasting Method Based on Sequence Prediction[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 470-482. |
[15] | Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data sets[J]. Science, 2011, 334(6062): 1518-1524. |
[16] | Shih S Y, Sun Fankeng, Lee H Y. Temporal Pattern Attention for Multivariate Time Series Forecasting[J]. Machine Learning, 2019, 108(8): 1421-1441. |
[1] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
[2] | Feng Zhiyuan, Chen Ying. Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning [J]. Journal of System Simulation, 2025, 37(6): 1499-1511. |
[3] | Cheng Chong, Wang Lixia, Duan Songtao, Xiong Xiaoguang, Ge Xianjun. Research on Obstacle Avoidance of Substation Robot Based on Spatiotemporal Networks [J]. Journal of System Simulation, 2025, 37(6): 1522-1530. |
[4] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
[5] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
[6] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
[7] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
[8] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
[9] | Chen Jing, Yang Guowei, Zhang Zhaochong, Wang Wei. City Regional Traffic Flow Prediction Based on Spatiotemporal Multi-view Attention Residual Network [J]. Journal of System Simulation, 2025, 37(3): 607-622. |
[10] | Xu Ming, Qi Guangyao, Qi Geqi. Fine-grained Traffic Flow Inference Model Based on Dynamic Back Projection Network [J]. Journal of System Simulation, 2025, 37(3): 657-666. |
[11] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
[12] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
[13] | Li Chao, Li Jiabao, Ding Caichang, Ye Zhiwei, Zuo Fangwei. Edge Surveillance Task Offloading and Resource Allocation Algorithm Based on DRL [J]. Journal of System Simulation, 2024, 36(9): 2113-2126. |
[14] | Liu Peijin, Fu Xuefeng, Sun Haofeng, He Lin, Liu Shujie. A Highly Robust Target Tracking Algorithm Merging CNN and Transformer [J]. Journal of System Simulation, 2024, 36(8): 1854-1868. |
[15] | Lu Yang, Liu Pengfei, Xu Siyuan, Liu Qiwang, Gu Fuqian, Wang Peng. Simulation of Rice Disease Recognition Based on Improved Attention Mechanism Embedded in PR-Net Model [J]. Journal of System Simulation, 2024, 36(6): 1322-1333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||