Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (3): 604-615.doi: 10.16182/j.issn1004731x.joss.21-1154
• Papers • Previous Articles Next Articles
Xingquan Cai(), Zhijun Li, Mengyao Xi, Haiyan Sun(
)
Received:
2021-11-10
Revised:
2022-01-05
Online:
2023-03-30
Published:
2023-03-22
Contact:
Haiyan Sun
E-mail:xingquancai@126.com;sunhaiyan80@hotmail.com
CLC Number:
Xingquan Cai, Zhijun Li, Mengyao Xi, Haiyan Sun. Costume Pattern Sketch Colorization and Style Transfer Based on Neural Network[J]. Journal of System Simulation, 2023, 35(3): 604-615.
1 | 梁培俊, 刘怡俊. 基于条件生成对抗网络的漫画手绘图上色方法[J]. 计算机应用研究, 2019, 36(1): 308-311. |
Liang Peijun, Liu Yijun. Caricature Hand Drawing Coloring Method Based on Conditional Generative Con-frontation Network[J]. Application Research of Computers, 2019, 36(1): 308-311. | |
2 | 李媛, 陈昭炯, 叶东毅. 注意力引导的交互式工笔花卉上色算法[J]. 模式识别与人工智能, 2020, 33(7): 575-587. |
Li Yuan, Chen Zhaojiong, Ye Dongyi. Attention-Guided Interactive Meticulous Flower Coloring Algorithm[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 575-587. | |
3 | Cheng Z, Yang Q, Sheng B. Deep Colorization[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Santiago, Chile: IEEE Press, 2015: 415-423. |
4 | Yoo S, Bahng H, Chung S, et al. Coloring with Limited Data: Few-Shot Colorization Via Memory-Augmented Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles, USA: IEEE Press, 2019: 11283-11292. |
5 | Sangkloy P, Lu J, Fang C, et al. Scribbler: Controlling Deep Image Synthesis with Sketch and Color[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 5400-5409. |
6 | Güclütürk Y. Convolutional sketch inversion[C]// ECCV Workshops Computer Vision. Amsterdam, Netherlands: ECCV Press, 2016: 810-824. |
7 | Ci Y, Ma X, Wang Z, et al. User-Guided Deep Anime Line Art Colorization with Conditional Adversarial Networks[C]// 26th ACM International Conference on Multimedia. Seoul, Korea: ACM Press, 2018: 1536-1544. |
8 | Mirza M, Osindero S. Conditional Generative Adversarial Nets[J]. Computer Science(S0098-3004), 2014, 48(4): 2672-2680. |
9 | Kron A, Nestmann F, SchlTer I, et al. Operational Flood Management under Large-Scale Extreme Conditions, Using the Example of the Middle Elbe[J]. Natural Hazards and Earth System Sciences (S1561-8633), 2010, 10(6): 1171-1181. |
10 | 常佳, 王玉德, 吉燕妮. 基于改进的U-Net生成对抗网络的图像翻译算法[J]. 通信技术, 2020, 53(2): 327-334. |
Chang Jia, Wang Yude, Ji Yanni. Image Translation Algorithm Based on Improved U-Net Generative Adversarial Network[J]. Communication Technology, 2020, 53(2): 327-334. | |
11 | Lee K H. A New Image Completion Method Inserting an Image Generated by Sketch Image[J]. International Journal of Innovative Technology and Exploring Engineering (S2278-3075), 2021, 10(4): 14-18. |
12 | Xie Minshan, Li Chengze, Liu Xueting, et al. Manga Filling Style Conversion with Screentone Variational Autoencoder[J]. ACM Transactions on Graphics (S0730-0301), 2020, 39(6): 22601-22615. |
13 | Frans K. Unsupervised Adversarial Defense through Tandem Deep Image Priors[J]. Electronics (S1087-4423), 2020, 9(11): 1957. |
14 | Aarti E. Generative Adversarial Networks and Their Variants[J]. Information Science (S0020-0255), 2021, 16(7): 59-80. |
15 | Zhang L, Li C, Wong T T, et al. Two-stage Sketch Colorization[J]. ACM Transactions on Graphics (S0730-0301), 2018, 37(6): 26101-26114. |
16 | 陈淑環, 韦玉科, 徐乐. 基于深度学习的图像风格迁移研究综述[J]. 计算机应用研究, 2019, 36(8): 2250-2255. |
Chen Shuhuan, Wei Yuke, Xu Le. A Review of Research on Image Style Transfer Based on Deep Learning[J]. Application Research of Computers, 2019, 36(8): 2250-2255. | |
17 | 丁晓龙. 基于深度学习的图像风格迁移技术的前沿进展[J]. 电子制作, 2018, 18(1): 86-87. |
Ding Xiaolong. The Cutting-Edge Development of Image Style Transfer Technology Based on Deep Learning[J]. Electronic production, 2018, 18(1): 86-87. | |
18 | 张海嵩, 尹小勤. 实时绘制3D中国画效果[J]. 计算机辅助设计与图形学学报, 2004, 11(2): 1485-1489. |
Zhang Haisong, Yin Xiaoqin. Real-Time Rendering of 3D Chinese Painting Effects[J]. Journal of Computer Aided Design and Graphics, 2004, 11(2): 1485-1489. | |
19 | 苗序娟, 余浩, 王露. 图像风格迁移技术概况及研究现状[J]. 现代计算机, 2021, 6(2): 67-72. |
Miao Xujuan, Yu Hao, Wang Lu. General Situation and Research Status of Image Style Transfer Technology[J]. Modern Computer, 2021, 6(2): 67-72. | |
20 | 张菊, 郭永峰. 深度学习研究综述[J]. 教学研究, 2021, 44(3): 6-11. |
Zhang Ju, Guo Yongfeng. A Survey of Deep Learning Research[J]. Teaching Research, 2021, 44(3): 6-11. | |
21 | Gatys L A, Ecker A S, Bethge M. Image Style Transfer Using Convolutional Neural Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 2414-2423. |
22 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science (S0098-3004), 2014, 15(4): 8570-8594. |
23 | Johnson J, Alahi A, Fei L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution[C]// European Conference on Computer Vision. Amsterdam, Netherlands: ECCV Press, 2016: 694-711. |
24 | Huang X, Belongie S. Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization[C]// IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 1510-1519. |
25 | Tian Q C, Schmidt M. Fast Patch-Based Style Transfer of Arbitrary Style[C]// IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles, USA: IEEE Press, 2019: 5873-5881. |
26 | Zhu J, Park T, Isola P, et al. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks[C]// IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 2242-225. |
[1] | Fengwei Yang, Peng Chen, Kai Xi, Hualin Pu, Xueyin Liu. Online Classification Method for Motor Imagery EEG with Spatial Information [J]. Journal of System Simulation, 2023, 35(2): 254-267. |
[2] | Lifeng Zhang, Huiren Wang. Image Reconstruction of Electrical Capacitance Tomography Based on Convolutional Neural Network and Finite Element Simulation [J]. Journal of System Simulation, 2022, 34(4): 712-718. |
[3] | Bangqian Ao, Sha Yang, Jinqing Linghu, zhenhuan Ye. Design of Fatigue Driving Detection System Based on Cascaded Neural Network [J]. Journal of System Simulation, 2022, 34(2): 323-333. |
[4] | Yaru Wang, Kai Yang, Yongjie Zhai, Congbin Guo, Wenqing Zhao, Jie Su. Transmission Line Insulator Recognition Based on Artificial Images Data Expansion [J]. Journal of System Simulation, 2022, 34(11): 2337-2347. |
[5] | Jiale Xu, Haidong Zhang, Donghai Zhao, Wancheng Ni. Tactical Maneuver Strategy Learning from Land Wargame Replay Based on Convolutional Neural Network [J]. Journal of System Simulation, 2022, 34(10): 2181-2193. |
[6] | Yecai Guo, Qingwei Wang. Modulation Recognition Algorithm Based on Truncated Migration and Parallel ResNet [J]. Journal of System Simulation, 2022, 34(09): 2009-2018. |
[7] | Zhao Ying, Lu Yao, Zhang Jian, Liang Qidi, Long Wei. Multi-view Human Action Recognition Based on Deep Neural Network [J]. Journal of System Simulation, 2021, 33(5): 1019-1030. |
[8] | Tong Weiguo, Pang Xuechun, Zhu Genghong. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4): 883-891. |
[9] | Huang Xin, Fang Yu, Gu Mengdan. Classification of Chest X-ray Disease Based on Convolutional Neural Network [J]. Journal of System Simulation, 2020, 32(6): 1188-1194. |
[10] | Fan Minglu, Wang Yan, Ji Zhicheng. Fault Diagnosis for Bearings of Unbalanced Data Based on Feature Generation [J]. Journal of System Simulation, 2020, 32(12): 2438-2448. |
[11] | Wang Hongjun, Li Zouzou, Zou Xiangjun. Wood Surface Defect Detection Based on Adaboost and CNN [J]. Journal of System Simulation, 2019, 31(8): 1636-1645. |
[12] | Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2275-2280. |
[13] | Xia Min, Shen Maoyang, Wang Jianfeng, Wang Yangguang. Cloud Fraction of Satellite Imagery Based On Convolutional Neural Networks [J]. Journal of System Simulation, 2018, 30(5): 1623-1630. |
[14] | Wu Yunpu, Jin Weidong, Huang Yingkun. Fault Diagnosis of High Speed Train Bogie Based on Multi-domain Fusion CNN [J]. Journal of System Simulation, 2018, 30(11): 4492-4497. |
[15] | Wang Song, Liu Fuchang, Huang Ji, Xu Weiwei, Dong Hongwei. Pose Estimation Using Convolutional Neural Network with Synthesis Depth Data [J]. Journal of System Simulation, 2017, 29(11): 2618-2623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||