Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (3): 614-623.doi: 10.16182/j.issn1004731x.joss.21-1082
• Modeling Theory and Methodology • Previous Articles Next Articles
Weiquan Wang1,3(
), Ding Ding1(
), Linsha Yan2
Received:2021-10-26
Revised:2021-11-04
Online:2022-03-18
Published:2022-03-22
Contact:
Ding Ding
E-mail:wangweiquan@uibe.edu.cn;dingd@uibe.edu.cn
CLC Number:
Weiquan Wang, Ding Ding, Linsha Yan. Path-Based Model for the Heterogeneous-Fleet Electric Vehicle Routing Problem with Partial Linear Recharging[J]. Journal of System Simulation, 2022, 34(3): 614-623.
Table 2
Mathematical notation of our model
| 符号 | 含义 |
|---|---|
| V | 车型的集合 |
| C | 商户节点的集合 |
| I | 所有节点的集合 |
| 直达路径集 | |
| 充电路径集 | |
| 从起点配送中心出发到商户终止的路径集 | |
| 从商户出发到商户终止的路径集 | |
| 从商户出发到终点配送中心终止的路径集 | |
| M | 一个充分大的数 |
| 路径 | |
| 路径 | |
| 路径 | |
| 路径 | |
| 路径 | |
| 路径 | |
| 商户 | |
| 商户 | |
| 节点 | |
| 配送中心的服务时间窗 | |
| 单位时间内充电的里程 | |
| 路径 | |
| 路径 | |
| 路径 | |
| 如果车辆访问路径 | |
| 路径 | |
| 车辆到达商户 | |
| 车辆离开商户 | |
| 车辆离开商户 | |
| 车辆离开商户 |
Table 6
Results of small-scale E-FSMFTW instances of type A
| 算例 | 文献[ FR | 本文 PR | Gap/% | Time/s |
|---|---|---|---|---|
| C101-5 | 857.75 | 857.75 | 0 | 0.06 |
| C103-5 | 476.05 | 475.37 | -0.14 | 0.09 |
| C206-5 | 1 261.88 | 1 252.10 | -0.78 | 0.09 |
| C208-5 | 1 164.34 | 1 164.34 | 0 | 0.17 |
| R104-5 | 327.25 | 327.25 | 0 | 0.17 |
| R105-5 | 346.08 | 346.08 | 0 | 0.05 |
| R202-5 | 609.18 | 609.18 | 0 | 0.27 |
| R203-5 | 645.63 | 645.63 | 0 | 0.17 |
| RC105-5 | 511.96 | 511.96 | 0 | 0.08 |
| RC108-5 | 532.04 | 532.04 | 0 | 0.14 |
| RC204-5 | 496.74 | 496.74 | 0 | 4.19 |
| RC208-5 | 328.89 | 328.89 | 0 | 0.44 |
| C101-10 | 1 302.15 | 1 296.84 | -0.41 | 0.13 |
| C104-10 | 902.71 | 902.71 | 0 | 7 200 |
| C202-10 | 1 304.32 | 1 304.32 | 0 | 1.22 |
| C205-10 | 2 631.97 | 2 282.61 | -13.27 | 1.11 |
| R102-10 | 595.34 | 585.18 | -1.71 | 3.75 |
| R103-10 | 478.07 | 478.07 | 0 | 6 069 |
| R201-10 | 1 138.38 | 773.35 | -32.07 | 3.16 |
| R203-10 | 952.16 | 952.16 | 0 | 7 200 |
| RC102-10 | 1 100.27 | 1 100.27 | 0 | 0.19 |
| RC108-10 | 693.27 | 693.27 | 0 | 6.44 |
| RC201-10 | 684.63 | 682.48 | -0.31 | 1.58 |
| RC205-10 | 1 064.59 | 1 064.59 | 0 | 15.34 |
| C103-15 | 1 291.03 | 1 274.43 | -1.29 | 7 200 |
| C106-15 | 1 253.59 | 1 250.76 | -0.23 | 1.05 |
| C202-15 | 2 403.35 | 2 403.35 | 0 | 7 200 |
| C208-15 | 2 325.89 | 2 325.89 | 0 | 7 200 |
| R102-15 | 850.58 | 846.74 | -0.45 | 36.38 |
| R105-15 | 760.13 | 760.13 | 0 | 13.73 |
| R202-15 | 1 311.24 | 1 311.24 | 0 | 7 200 |
| R209-15 | 1 033.50 | 1 033.50 | 0 | 7 200 |
| RC103-15 | 840.97 | 840.97 | 0 | 7 200 |
| RC108-15 | 1 013.70 | 1 013.70 | 0 | 7 200 |
| RC202-15 | 1 101.60 | 1 101.60 | 0 | 487.84 |
| RC204-15 | 810.90 | 810.90 | 0 | 7 200 |
| Average Gap/% | -1.41 | |||
| Average Opt Time/s | 512 | |||
| #Opt/#Num | 26/36 | |||
Table 7
Results of small-scale E-FSMFTW instances of type B
| 算例 | 文献[ FR | 本文 PR | Gap/% | Time/s |
|---|---|---|---|---|
| C101-5 | 377.75 | 377.75 | 0 | 0.03 |
| C103-5 | 236.05 | 235.37 | -0.29 | 0.08 |
| C206-5 | 461.88 | 452.10 | -2.12 | 0.09 |
| C208-5 | 364.34 | 364.34 | 0 | 0.17 |
| R104-5 | 175.25 | 175.25 | 0 | 0.16 |
| R105-5 | 194.08 | 194.08 | 0 | 0.05 |
| R202-5 | 249.18 | 249.18 | 0 | 0.26 |
| R203-5 | 285.63 | 285.63 | 0 | 0.17 |
| RC105-5 | 295.96 | 295.96 | 0 | 0.08 |
| RC108-5 | 313.93 | 313.93 | 0 | 0.11 |
| RC204-5 | 255.55 | 255.55 | 0 | 1.09 |
| RC208-5 | 208.89 | 208.89 | 0 | 0.52 |
| C101-10 | 582.15 | 576.84 | -0.91 | 0.13 |
| C104-10 | 422.71 | 422.71 | 0 | 1 244.39 |
| C202-10 | 504.32 | 504.32 | 0 | 0.72 |
| C205-10 | 711.97 | 682.61 | -4.12 | 1.22 |
| R102-10 | 325.19 | 325.19 | 0 | 1.23 |
| R103-10 | 262.07 | 262.07 | 0 | 1 392 |
| R201-10 | 418.38 | 404.23 | -3.38 | 1.92 |
| R203-10 | 392.16 | 392.16 | 0 | 1 494.97 |
| RC102-10 | 572.27 | 572.27 | 0 | 0.19 |
| RC108-10 | 422.12 | 422.12 | 0 | 17.19 |
| RC201-10 | 429.17 | 429.17 | 0 | 0.99 |
| RC205-10 | 504.59 | 504.59 | 0 | 1.84 |
| C103-15 | 571.03 | 554.43 | -2.91 | 7 200 |
| C106-15 | 533.59 | 530.76 | -0.53 | 5.36 |
| C202-15 | 803.35 | 803.35 | 0 | 4 630.06 |
| C208-15 | 725.89 | 725.89 | 0 | 7 200 |
| R102-15 | 511.55 | 506.69 | -0.95 | 11.19 |
| R105-15 | 436.89 | 436.89 | 0 | 6.22 |
| R202-15 | 591.24 | 591.24 | 0 | 7 200 |
| R209-15 | 473.50 | 473.50 | 0 | 7 200 |
| RC103-15 | 499.67 | 499.67 | 0 | 1 387.36 |
| RC108-15 | 514.65 | 514.65 | 0 | 7 200 |
| RC202-15 | 541.61 | 541.61 | 0 | 351.37 |
| RC204-15 | 410.90 | 410.90 | 0 | 7 200 |
| Average Gap/% | -0.42 | |||
| Average Opt Time/s | 351 | |||
| #Opt/#Num | 30/36 | |||
Table 8
Results of small-scale E-FSMFTW instances of type C
| 算例 | 文献[ FR | 本文 PR | Gap/% | Time/s |
|---|---|---|---|---|
| C101-5 | 317.75 | 317.75 | 0 | 0.03 |
| C103-5 | 206.05 | 205.37 | -0.33 | 0.08 |
| C206-5 | 361.88 | 352.10 | -2.70 | 0.08 |
| C208-5 | 264.34 | 264.34 | 0 | 0.22 |
| R104-5 | 156.25 | 156.25 | 0 | 0.16 |
| R105-5 | 175.08 | 175.08 | 0 | 0.05 |
| R202-5 | 204.18 | 204.18 | 0 | 0.25 |
| R203-5 | 240.63 | 240.63 | 0 | 0.17 |
| RC105-5 | 268.96 | 268.96 | 0 | 0.08 |
| RC108-5 | 283.93 | 283.93 | 0 | 0.13 |
| RC204-5 | 220.55 | 220.55 | 0 | 0.77 |
| RC208-5 | 193.89 | 193.89 | 0 | 0.51 |
| C101-10 | 492.15 | 486.84 | -1.08 | 0.16 |
| C104-10 | 362.71 | 362.71 | 0 | 277.16 |
| C202-10 | 404.32 | 404.32 | 0 | 1.38 |
| C205-10 | 471.97 | 471.97 | 0 | 1.08 |
| R102-10 | 287.19 | 287.19 | 0 | 1.05 |
| R103-10 | 235.07 | 234.30 | -0.33 | 813.61 |
| R201-10 | 328.38 | 320.93 | -2.27 | 1.78 |
| R203-10 | 322.16 | 322.16 | 0 | 421.74 |
| RC102-10 | 498.51 | 498.51 | 0 | 0.19 |
| RC108-10 | 386.12 | 386.12 | 0 | 1.73 |
| RC201-10 | 384.17 | 384.17 | 0 | 0.69 |
| RC205-10 | 429.69 | 426.69 | -0.70 | 1.23 |
| C103-15 | 481.03 | 464.43 | -3.45 | 3 081.31 |
| C106-15 | 415.13 | 415.13 | 0 | 4.33 |
| C202-15 | 603.35 | 603.35 | 0 | 944.92 |
| C208-15 | 525.89 | 525.89 | 0 | 305.22 |
| R102-15 | 465.94 | 460.69 | -1.13 | 9.77 |
| R105-15 | 387.89 | 387.89 | 0 | 3.05 |
| R202-15 | 495.64 | 495.64 | 0 | 7 200 |
| R209-15 | 403.50 | 403.50 | 0 | 3 150.45 |
| RC103-15 | 448.67 | 448.67 | 0 | 1 057.94 |
| RC108-15 | 445.25 | 445.25 | 0 | 7 200 |
| RC202-15 | 471.61 | 471.61 | 0 | 114.02 |
| RC204-15 | 360.90 | 360.90 | 0 | 7 200 |
| Average Gap/% | -0.33 | |||
| Average Opt time/s | 308 | |||
| #Opt/#Num | 33/36 | |||
| 1 | Erdoğan S, Miller-Hooks E. A Green Vehicle Routing Problem[J]. Transportation Research Part E: Logistics and Transportation Review (S1366-5545), 2012, 48(1): 100-114. |
| 2 | Roberti R, Wen M. The Electric Traveling Salesman Problem with Time Windows[J]. Transportation Research Part E: Logistics and Transportation Review (S1366-5545), 2016, 89: 32-52. |
| 3 | Schneider M, Stenger A, Goeke D. The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations[J]. Transportation Science (S0041-1655), 2014, 48(4): 500-520. |
| 4 | Desaulniers G, Errico F, Irnich S, et al. Exact algorithms for Electric Vehicle-Routing Problems with Time Windows[J]. Operations Research, (S0030-364X), 2016, 64(6): 1388-1405. |
| 5 | Golden B, Assad A, Levy L, et al. The Fleet Size and Mix Vehicle Routing Problem[J]. Computers & Operations Research, (S0305-0548), 1984, 11(1): 49-66. |
| 6 | Goeke D, Schneider M. Routing a Mixed Fleet of Electric and Conventional Vehicles[J]. European Journal of Operational Research, (S0377-2217), 2015, 245(1): 81-99. |
| 7 | Hiermann G, Puchinger J, Ropke S, et al. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations[J]. European Journal of Operational Research (S0377-2217), 2016, 252(3): 995-1018. |
| 8 | Hiermann G, Hartl R F, Puchinger J, et al. Routing a Mix of Conventional, Plug-in Hybrid, and Electric Vehicles[J]. European Journal of Operational Research (S0377-2217), 2019, 272(1): 235-248. |
| 9 | Macrina G, Laporte G, Guerriero F, et al. An Energy-Efficient Green-Vehicle Routing Problem with Mixed Vehicle Fleet, Partial Battery Recharging and Time Windows[J]. European Journal of Operational Research (S0377-2217), 2019, 276(3): 971-982. |
| 10 | 揭婉晨, 杨珺, 杨超. 多车型电动汽车车辆路径问题的分支定价算法研究[J]. 系统工程理论与实践, 2016, 36(7): 1795-1805. |
| Wanchen Jie, Yang Jun, Yang Chao. Branch-and-Price Algorithm for Heterogeneous Electric Vehicle Routing Problem[J]. Systems Engineering-Theory & Practice, 2016, 36(7): 1795-1805. | |
| 11 | 李得成, 陈彦如, 张宗成. 基于分支定价算法的电动车与燃油车混合车辆路径问题研究[J]. 系统工程理论与实践, 2021, 41(4): 995-1009. |
| Li Decheng, Chen Yanru, Zhang Zongcheng. A Branch-and-Price Algorithm for Electric Vehicle Routing Problem with Time Windows and Mixed Fleet[J]. Systems Engineering — Theory & Practice, 2021, 41(4): 995-1009. | |
| 12 | 李英, 张鹏威, 吴一帆. 电动汽车/传统汽车混合车队配置及路径优化模型[J]. 系统管理学报, 2020, 29(3): 522-531. |
| Li Ying, Zhang Pengwei, Wu Yifan. Vehicle Routing Problem with Mixed Fleet of Conventional and Electric Vehicles[J]. Journal of Systems & Management, 2020, 29 (3): 971-982. | |
| 13 | Keskin M, Çatay B. Partial Recharge Strategies for the Electric Vehicle Routing Problem with Time Windows[J]. Transportation Research Part C: Emerging Technologies (S0968-090X), 2016, 65: 111-127. |
| 14 | Felipe Á, Ortuño M T, Righini G, et al. A Heuristic Approach for the Green Vehicle Routing Problem with Multiple Technologies and Partial Recharges[J]. Transportation Research Part E: Logistics and Transportation Review (S1366-5545), 2014, 71: 111-128. |
| 15 | Sweda T M, Dolinskaya I S, Klabjan D. Adaptive Routing and Recharging Policies for Electric Vehicles[J]. Transportation Science (S0041-1655), 2017, 51(4): 1326-1348. |
| 16 | Montoya A, Guéret C, Mendoza J E, et al. The Electric Vehicle Routing Problem with Nonlinear Charging Function[J]. Transportation Research Part B: Methodological (S0191-2615), 2017, 103: 87-110. |
| 17 | Froger A, Mendoza J E, Jabali O, et al. Improved Formulations and Algorithmic Components for the Electric Vehicle Routing Problem with Nonlinear Charging Functions[J]. Computers & Operations Research (S0305-0548), 2019, 104: 256-294. |
| 18 | Schiffer M, Walther G. An Adaptive Large Neighborhood Search for the Location-Routing Problem with Intra-Route Facilities[J]. Transportation Science (S0041-1655), 2018, 52(2): 331-352. |
| 19 | 赵灿华, 侍洪波. 基于自适应变邻域搜索的大规模电动车辆路径优化[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 694-701. |
| Zhao Canhua, Shi Hongbo. Large-Scale Electric Vehicle Route Optimization Based on Adaptive Variable Neighborhood Search[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2020, 46(5): 694-701. | |
| 20 | Zhao M, Lu Y. A Heuristic Approach for a Real-World Electric Vehicle Routing Problem[J]. Algorithms (S1999-4893), 2019, 12(2): 45. |
| 21 | Wen M, Linde E, Ropke S, et al. An Adaptive Large Neighborhood Search Heuristic for the Electric Vehicle Scheduling Problem[J]. Computers & Operations Research (S0305-0548), 2016, 76: 73-83. |
| 22 | Cortés-Murcia D L, Prodhon C, Afsar H M. The Electric Vehicle Routing Problem with Time Windows, Partial Recharges and Satellite Customers[J]. Transportation Research Part E: Logistics and Transportation Review (S1366-5545), 2019, 130: 184-206. |
| 23 | Hansen P, Mladenović N. Variable Neighborhood Search: Principles and Applications[J]. European Journal of Operational Research (S0377-2217), 2001, 130(3): 449-467. |
| 24 | Vidal T, Crainic T G, Gendreau M, et al. A Hybrid Genetic Algorithm with Adaptive Diversity Management for a Large Class of Vehicle Routing Problems with Time-Windows[J]. Computers & Operations Research (S0305-0548), 2013, 40(1): 475-489. |
| 25 | 胡蓉, 陈文博, 钱斌, 等. 学习型蚁群算法求解绿色多车场车辆路径问题[J]. 系统仿真学报, 2021, 33(9): 2095-2108. |
| Hu Rong, Chen Wenbo, Qian Bin, et al. Learning Ant Colony Algorithm for Green Multi-Depot Vehicle Routing Problem[J]. Journal of System Simulation, 2021, 33(9): 2095-2108. | |
| 26 | 宁涛, 郭晨, 陈荣, 等. 一种动态车辆路径问题解决策略仿真研究[J]. 系统仿真学报, 2015, 27(12): 2942-2947. |
| Ning Tao, Guo Chen, Chen Rong, et al. Simulation Study on Scheduling Strategy of Dynamic Vehicle Routing Problem[J]. Journal of System Simulation, 2015, 27(12): 2942-2947. | |
| 27 | 范双南, 陈纪铭, 高为民, 等. 基于改进智能水滴算法的动态车辆配送路径优化[J]. 系统仿真学报, 2020, 32(9): 1808-1817. |
| Fan Shuangnan, Chen Jiming, Gao Weimin, et al. Dynamic Vehicle Distribution Path Optimization Based on Improved Intelligent Water Drop Algorithm[J]. Journal of System Simulation, 2020, 32(9): 1808-1817. | |
| 28 | Bruglieri M, Mancini S, Pezzella F, et al. A Path-Based Solution Approach for the Green Vehicle Routing Problem[J]. Computers & Operations Research (S0305-0548), 2019, 103: 109-122. |
| 29 | Solomon M M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints[J]. Operations Research (S0030-364X), 1987, 35(2): 254-265. |
| 30 | Schiffer M, Walther G. The Electric Location Routing Problem with Time Windows and Partial Recharging[J]. European Journal of Operational Research (S0377-2217), 2017, 260(3): 995-1013. |
| [1] | Jin Dongyao, Liu Min, Zhu Yena, Zhao Yijiang. A Hybrid Genetic Search Algorithm for Capacitated Electric Vehicle Routing Problem [J]. Journal of System Simulation, 2024, 36(11): 2528-2541. |
| [2] | Weiquan Wang, Ding Ding, Shuyan Cao. Hybrid Variable Neighborhood Search algorithm for the Multi-trip and Heterogeneous-fleet Electric Vehicle Routing Problem [J]. Journal of System Simulation, 2022, 34(4): 910-919. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||