Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (3): 573-583.doi: 10.16182/j.issn1004731x.joss.21-0110
• Modeling Theory and Methodology • Previous Articles Next Articles
Dinghui Wu1(), Tongrui Zhang1(), Xiuli Zhang2
Received:
2021-02-05
Revised:
2021-05-18
Online:
2022-03-18
Published:
2022-03-22
Contact:
Tongrui Zhang
E-mail:wh033098@163.com;ztrdaydayup@foxmail.com
CLC Number:
Dinghui Wu, Tongrui Zhang, Xiuli Zhang. Job Shop Rescheduling Under Recessive Disturbance Based on Digital Twin[J]. Journal of System Simulation, 2022, 34(3): 573-583.
1 | 唐秋华, 成丽新, 张利平. 扰动累积下基于机器学习的重调度方式选择[J]. 中国机械工程, 2019, 30(4): 472-479. |
Tang Qiuhua, Cheng Lixin, Zhang Liping. Re-Scheduling Mode Selection Under Recessive Disturbance Accumulation via Machine Learning[J]. China Mechanical Engineering, 2019, 30(4): 472-479. | |
2 | Wang Chuang, Jiang Pingyu. Manifold Learning Based Rescheduling Decision Mechanism for Recessive Disturbances in RFID-Driven Job Shops[J]. Journal of Intelligent Manufacturing, 2018, 29(7): 1485-1500. |
3 | 刘民. 基于数据的生产过程调度方法研究综述[J]. 自动化学报, 2009, 35(6): 785-806. |
Liu Min. A Survey of Data-Based Production Scheduling Methods[J]. Acta Automatica Sinica, 2009, 35(6): 785-806. | |
4 | 刘壮, 张中敏, 杜先军. 基于改进TOPSIS的制造车间重调度决策方法研究[J]. 组合机床与自动化加工技术, 2017(1): 157-160. |
Liu Zhuang, Zhang Zhongmin, Du Xianjun. Re-Scheduling Decision of Method Manufacturing Workshop Based on Improved TOPSIS[J]. Modular Machine Tool and Automatic Machining Technology, 2017(1): 157-160. | |
5 | Akkan Can. Improving Schedule Stability in Single-Machine Rescheduling for New Operation Insertion[J]. Computers and Operations Research (S0305-0548), 2015, 64: 198-209. |
6 | 左乐. 不确定环境下柔性作业车间的多目标动态调度研究[D]. 北京: 北京交通大学, 2015. |
Zuo Le. Study on Multi-Objective Dynamic Production Scheduling Problem of Flexible Job Shop under Uncertainty[D]. Beijing: Beijing Jiaotong University, 2015. | |
7 | 张洁, 秦威. 智能制造调度为先——«制造系统智能调度方法与云服务»导读[J]. 中国机械工程,2019, 30(8): 1002-1007. |
Zhang Jie, Qin Wei. Intelligent Manufacturing Scheduling First-A Guide of ManufacturingSystem Intelligent Scheduling Method and Cloud Service[J]. China Mechanical Engineering, 2019, 30(8): 1002-1007. | |
8 | 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J].系统仿真学报, 2019, 31(3): 385-392. |
Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and safe Development[J]. Journal of System Simulation, 2019, 31(3): 385-392. | |
9 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(1): 1-18. |
Tao Fei, Liu Weiran, Liu Jianhua, etal. Digital Twin and its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1):1-18. | |
10 | 费永辉. 基于数字孪生的柔性作业车间动态调度研究[D]. 杭州: 浙江工业大学, 2019. |
Fei Yonghui. Research on Flexible Job Shop Dynamic Scheduling Based on Digital Twins[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
11 | Fang Y, Peng C, Lou P, et al. Digital-Twin Based Job Shop Scheduling Towards Smart Manufacturing[J]. IEEE Transactions on Industrial Informatics (S1551-3203), 2019, 15: 6425-6435. |
12 | Chopra S, Hadsell R, Lecun Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA, USA: IEEE, 2005. |
13 | Hughes L H, Schmitt M, Mou L, et al. Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN[J]. IEEE Geoscience and Remote Sensing Letters (S1505-598X), 2018, 15(5): 784-788. |
14 | Fei Tao, Cheng Jiangfeng, Qi Qinglin, et al. Digital Twin-Driven Product Design, Manufacturing and Service with Big Data[J]. The International Journal of Advanced Manufacturing Technology (S0268-3768), 2018, 94: 3563-3576. |
15 | 侯智, 陈倩, 陈进. 制造过程中的不确定信息及其处理方法综述[J]. 机床与液压, 2018, 46(5): 121-126. |
Hou Zhi, Chen Qian, Chen Jin. Review of Uncertain Information and Its Processing Methods in Manufacturing Process[J]. Machine Tool and Hydraulics, 2018, 46(5): 121-126. | |
16 | 蒋静静. 基于深度强化学习的离散型制造企业车间动态调度研究[D]. 西安: 西安理工大学, 2020. |
Jiang Jingjing. Research on Job Shop dynamic Scheduling of Discrete Manufacturing Enterprise Based on Deep Reinforcement learning[D]. Xi'an: Xi'an University of Technology, 2020. | |
17 | Wei Zhang, Peng Gaoliang, Li Chuanhao, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors (S1424-8220), 2017, 17(2): 425. |
18 | 孔飞, 吴定会, 纪志成. 基于双层粒子群优化算法的柔性作业车间调度优化[J]. 计算机应用, 2015, 35(2): 476-480. |
Kong Fei, Wu Dinghui, Ji Zhicheng. Flexible Job Shop Scheduling Optimization Based on Two-Layer Particle Swarm Optimization Algorithm[J]. Journal of Computer Applications, 2015, 35(2): 476-480. |
[1] | Wei Zhou, Yuxiang Liu, Guangping Liao, Xin Ma. Siamese Object Tracking Algorithm Combined with the Intersection over Union Loss [J]. Journal of System Simulation, 2022, 34(9): 1956-1967. |
[2] | Bohu Li, Xudong Chai, Lin Zhang, Duzheng Qing, Guoqiang Shi, Tingyu Lin, Liqin Guo, Chen Yang, Mu Gu, Zhengxuan Jia, Hui Gong, Zhen Tang. New Embedded Simulation Technology for Smart Internet of Things [J]. Journal of System Simulation, 2022, 34(3): 419-441. |
[3] | Shu Liang, Zhang Jie, Yang Yanfang, Yang Miao, Wu Ziran. Dynamic Control of Twin-workshop Model of Circuit Breaker Considering Takt Time Constraints [J]. Journal of System Simulation, 2021, 33(6): 1277-1287. |
[4] | Liu Yu, Xie Qiang. Technical Characteristics of Digital Twins and Application Prospects in the Field of Flight Testing [J]. Journal of System Simulation, 2021, 33(6): 1364-1373. |
[5] | Zhang Lin, Lu Han. Discussing Digital Twin from of Modeling and Simulation [J]. Journal of System Simulation, 2021, 33(5): 995-1007. |
[6] | Wu Zhaohui, Liu Zhenzheng, Shi Ke, Wang Liang, Liang Xiaojie. Review on the Construction and Application of Digital Twins in Transportation Scenes [J]. Journal of System Simulation, 2021, 33(2): 295-305. |
[7] | Xiao Tong, Jiang Haifan, Ding Guofu, Jiang Lei, Ma Shuwen. Research on Digital Twin-based Modeling and Monitoring of Five-axis Grinder [J]. Journal of System Simulation, 2021, 33(12): 2880-2890. |
[8] | Wang Junfeng, Zhang Yufan, Shao Yaoqi, Li Shiqi. Research on Simulation Data Mapping for Production Performance Digital Twin [J]. Journal of System Simulation, 2021, 33(10): 2470-2477. |
[9] | Zhou Junhua, Xue Junjie, Li Heyu, Ji Hang, Lin Tingyu, Shi Guoqiang. Thinking on Digital Twin for Weapon System [J]. Journal of System Simulation, 2020, 32(4): 539-552. |
[10] | Zhang Bing, Li Xin, Wan Xinxin. From Digital Twin to Digital Engineering Modeling and Simulation Entering a New Era [J]. Journal of System Simulation, 2019, 31(3): 369-376. |
[11] | Liu Xiaoxiang, Tang Liang, Zeng Haibo, Liu Yubai, Zhang Xinbang. Smart Design and Simulation of Aerospace Control System Based on Digital Twin [J]. Journal of System Simulation, 2019, 31(3): 377-384. |
[12] | Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and safe Development [J]. Journal of System Simulation, 2019, 31(3): 385-392. |
[13] | Xiao Yingying, Wang Mei, Guo Liqin, Xing Chi, Zhuang Changhui. Intelligent Manufacturing Plan Management Based on Digital Twins [J]. Journal of System Simulation, 2019, 31(11): 2323-2334. |
[14] | Wu Yunpu, Jin Weidong, Ren Junxiao. Fault Identification of High-Speed Train Bogie Based on Siamese Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2562-2568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||