[1] Xiong M, Chen J, Wang Z, et al.Deep Feature Representation via Multiple Stack AutoEnco-ders[M]. Advances in Multimedia Information Processing-PCM, 2015: 275-284. [2] Chen Kunjin, Hu Jun, He Jinliang, et al.A Framework for Automatically Extracting Overvoltage Features Based on Sparse Autoencoder[J]. IEEE Transactions on Smart Grid (S1949-3053), 2016: 1-1. [3] Tao Chao, Pan Hongbo, Li Yansheng, et al.Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyprspectral Imagery Classification[J]. IEEE Geoscience and Remote Sensing Letters (S1545-598X). 2015: 2438-2442. [4] Yin Hongpeng, Jiao Xuguo, Chai Yi, et al.Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications (S0957-4174), 2015, 42(7): 3368-3380. [5] Esam Othman, Yakoub Bazi, Naif Alajlan, et al.Using convolutional features and a sparse autoencoder for land-use scene classification[J]. International Journal of Remote Sensing (S0143-1161), 2016: 2149-2167. [6] Makhzani A, Frey B.Winner-Take-All Autoencoders[J]. Eprint Arxiv(S1049-5258), 2014: 2773-2781. [7] H Lee, R Grosse, R Ranganath, et al.Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations-[C]// Proceedings of the 26th Annual International Conference on Machine Learning. Canada, 2009: 609-616. [8] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, et al.Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research (S1532-4435), 2010: 3371-3408. [9] Du Bo, Xiong Wei, Wu Jia, et al.Stacked Convolutional Denoising AutoEncoders for Feature Representation[J]. IEEE Transactions on Cybernetics(S2168-2267), 2016: 1-11. [10] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, et al.Extracting and composing robust features with denoising autoencoders[C]// Proceedin-ings of the 25th International Conference on Machine Learning, 2008: 1096-1103. [11] Chow R, Zhong W, Blackmon M, et al.An efficient SVM-GA feature selection model for large healthcare databases[C]// Genetic and Evolutionary Computation Conference. USA, 2008: 1373-1380. [12] Rifai S, Vincent P, Muller X, et al.Contractive Auto-Encoders: Explicit Invariance During Feature Extraction[C]// Proceedings of the 28th International Conference on Machine Learning. 2011: 833-840. [13] Ju Y, Guo J, Liu S.A Deep Learning Method Combined Sparse Autoencoder with SVM[C]// International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, 2015: 257-260. [14] Bengio Y, Lamblin P, Popovici D, et al.Greedy layer-wise training of deep networks[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada, 2007: 153-160. [15] Dai C.SVM Visual Classification Based on Weighted Feature of Genetic Algorithm[C]// Sixth International Conference on Intelligent Systems Design and Engineering Applications. IEEE Computer Society, 2015: 786-789. [16] Huang C L, Wang C G.A GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications (S0957-4174), 2006: 231-240. |