Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (5): 994-1002.doi: 10.16182/j.issn1004731x.joss.20-0908
• Modeling Theory and Methodology • Previous Articles Next Articles
Jianlin Fu(), Guofu Ding, Jian Zhang, Haifan Jiang, Peipei Guo
Received:
2020-11-19
Revised:
2021-08-09
Online:
2022-05-18
Published:
2022-05-25
CLC Number:
Jianlin Fu, Guofu Ding, Jian Zhang, Haifan Jiang, Peipei Guo. Multi-Objective Optimization Configuration of AGV System Based on Response Surface and NSGA-II[J]. Journal of System Simulation, 2022, 34(5): 994-1002.
Table 1
Process route and man-hour of the workpiece
工件类型 | 工序 | 机床 | 工序时长/s | 工件类型 | 工序 | 机床 | 工序时长/s |
---|---|---|---|---|---|---|---|
1 | O11 | M2 | 234 | 4 | O41 | M7 | 277 |
O12 | M6 | 211 | O42 | M5 | 397 | ||
O13 | M8 | 123 | O43 | M12 | 255 | ||
O14 | M12 | 78 | O44 | M8 | 256 | ||
O15 | M7 | 264 | O45 | M9 | 216 | ||
O16 | M5 | 231 | 5 | O51 | M1 | 356 | |
2 | O21 | M3 | 156 | O52 | M7 | 157 | |
O22 | M4 | 67 | O53 | M9 | 192 | ||
O23 | M11 | 273 | O54 | M4 | 234 | ||
O24 | M10 | 223 | O55 | M12 | 225 | ||
O25 | M9 | 243 | O56 | M10 | 225 | ||
3 | O31 | M1 | 78 | 6 | O61 | M3 | 452 |
O32 | M4 | 254 | O62 | M2 | 254 | ||
O33 | M6 | 542 | O63 | M10 | 195 | ||
O34 | M8 | 399 | O64 | M11 | 236 | ||
O35 | M11 | 244 | O65 | M1 | 123 | ||
… | … | … | O66 | M4 | 235 |
Table 3
CCD test design and response values
No | x1 | x2 | x3 | x4 | y1 | y2 | y3 | y4 |
---|---|---|---|---|---|---|---|---|
1 | 2 | 1.5 | 7.5 | 7.5 | 8 773 | 0.799 512 | 0.445 52 | 3 500 |
2 | 4 | 1.5 | 7.5 | 7.5 | 5 120 | 0.765 543 | 0.812 203 | 6 380 |
3 | 2 | 2.5 | 7.5 | 7.5 | 1 824 | 0.705 768 | 0.648 24 | 5 092 |
4 | 4 | 2.5 | 7.5 | 7.5 | 5 886 | 0.523 901 | 0.811 137 | 6 374 |
5 | 2 | 1.5 | 12.5 | 7.5 | 1 047 | 0.748 572 | 0.417 823 | 3 281 |
6 | 4 | 1.5 | 12.5 | 7.5 | 6 451 | 0.738 016 | 0.813 193 | 6 388 |
7 | 2 | 2.5 | 12.5 | 7.5 | 2 118 | 0.641 999 | 0.589 434 | 4 630 |
8 | 4 | 2.5 | 12.5 | 7.5 | 8 985 | 0.514 027 | 0.811 232 | 6 373 |
9 | 2 | 1.5 | 7.5 | 12.5 | 1 028 | 0.749 232 | 0.417 263 | 3 276 |
10 | 4 | 1.5 | 7.5 | 12.5 | 6 265 | 0.738 452 | 0.812 872 | 6 386 |
11 | 2 | 2.5 | 7.5 | 12.5 | 1 998 | 0.642 495 | 0.590 785 | 4 641 |
12 | 4 | 2.5 | 7.5 | 12.5 | 7 667 | 0.514 716 | 0.811 775 | 6 379 |
13 | 2 | 1.5 | 12.5 | 12.5 | 1 103 | 0.704 424 | 0.392 879 | 3 084 |
14 | 4 | 1.5 | 12.5 | 12.5 | 6 601 | 0.697 34 | 0.778 196 | 6 113 |
15 | 2 | 2.5 | 12.5 | 12.5 | 2 063 | 0.589 703 | 0.541 42 | 4 253 |
16 | 4 | 2.5 | 12.5 | 12.5 | 8 923 | 0.504 503 | 0.811 642 | 6 379 |
17 | 2 | 2 | 10 | 10 | 1 525 | 0.692 047 | 0.510 053 | 4 007 |
18 | 4 | 2 | 10 | 10 | 7 048 | 0.613 785 | 0.812 635 | 6 386 |
19 | 3 | 1.5 | 10 | 10 | 2 944 | 0.746 891 | 0.622 647 | 4 890 |
20 | 3 | 2.5 | 10 | 10 | 5 649 | 0.616 453 | 0.812 066 | 6 380 |
21 | 3 | 2 | 7.5 | 10 | 4 370 | 0.715 551 | 0.794 983 | 6 245 |
22 | 3 | 2 | 12.5 | 10 | 4 795 | 0.660 532 | 0.734 758 | 5 771 |
23 | 3 | 2 | 10 | 7.5 | 4 345 | 0.715 068 | 0.795 499 | 6 249 |
24 | 3 | 2 | 10 | 12.5 | 4 751 | 0.661 539 | 0.734 395 | 5 769 |
25 | 3 | 2 | 10 | 10 | 4 456 | 0.687 192 | 0.763 956 | 6 002 |
26 | 3 | 2 | 10 | 10 | 4 545 | 0.687 244 | 0.763 495 | 5 998 |
27 | 3 | 2 | 10 | 10 | 4 424 | 0.687 147 | 0.764 593 | 6 007 |
28 | 3 | 2 | 10 | 10 | 4 475 | 0.687 277 | 0.763 663 | 5 998 |
29 | 3 | 2 | 10 | 10 | 4 445 | 0.686 992 | 0.764 774 | 6 007 |
30 | 3 | 2 | 10 | 10 | 4 444 | 0.687 087 | 0.764 416 | 6 004 |
Table 4
Values of response surface fitting degree
度量值 | f(1) | f(2) | f(3) | f(4) |
---|---|---|---|---|
R-Squared | 0.997 506 | 0.991 576 | 0.997 775 | 0.998 859 |
Adj R-Squared | 0.995 178 | 0.983 714 | 0.995 699 | 0.997 795 |
Pred-Squared | 0.984 839 | 0.947 048 | 0.988 658 | 0.994 566 |
Adeq Precision | 68.845 79 | 44.510 09 | 71.908 1 | 102.106 8 |
F | 428.5 | 126.12 | 480.53 | 938.34 |
p-value | <0.000 1 | <0.000 1 | <0.000 1 | <0.000 1 |
Table 5
Optimal solution set of AGV system multi-objective optimization configuration
序号 | 数量(个) | 速度/?(m/s) | 装载 时间/s | 卸载 时间/s | 拥堵 次数 | AGV?利用率 | 机床 利用率 | 产量(件) |
---|---|---|---|---|---|---|---|---|
1 | 4 | 1.72 | 5.02 | 5.05 | 4 737 | 0.760 | 0.940 | 7 428 |
2 | 3 | 1.84 | 5.10 | 5.16 | 3 243 | 0.820 | 0.907 | 7 172 |
3 | 4 | 1.55 | 5.03 | 5.00 | 4 345 | 0.799 | 0.908 | 7 148 |
4 | 4 | 1.50 | 5.00 | 5.00 | 4 206 | 0.812 | 0.896 | 7 037 |
5 | 4 | 1.44 | 5.02 | 5.09 | 4 070 | 0.823 | 0.878 | 6 880 |
6 | 3 | 1.73 | 5.32 | 5.20 | 3 045 | 0.835 | 0.864 | 6 763 |
7 | 4 | 1.32 | 5.04 | 5.02 | 3 733 | 0.851 | 0.842 | 6 575 |
8 | 4 | 1.28 | 5.06 | 5.02 | 3 627 | 0.860 | 0.829 | 6 463 |
9 | 3 | 1.58 | 5.04 | 5.12 | 2 725 | 0.865 | 0.824 | 6 380 |
10 | 2 | 2.91 | 5.00 | 5.00 | 1 733 | 0.722 | 0.792 | 6 325 |
[1] | 付建林, 张恒志, 张剑, 等. 自动导引车调度优化研究综述[J]. 系统仿真学报, 2020, 32(9): 1664-1675. |
Fu Jianlin, Zhang Hengzhi, Zhang Jian, et al. Review on AGV Scheduling Optimization[J]. Journal of System Simulation, 2020, 32(9): 1664-1675. | |
[2] | Johnson M E, Brandeau M L. An Analytic Model for Design of a Multivehicle Automated Guided Vehicle System[J]. Management Science (S0025-1909), 1993, 39(12): 1477-1489. |
[3] | Rajotia S, Shanker K, Batra J L. Determination of Optimal AGV Fleet Size for an FMS[J]. International Journal of Production Research (S0020-7543), 1998, 36(5): 1177-1198. |
[4] | Arifin R, Egbelu P J. Determination of Vehicle Requirements in Automated Guided Vehicle Systems: a Statistical Approach[J]. Production Planning & Control (S0953-7287), 2000, 11(3): 258-270. |
[5] | 黄一钧. 车身车间AGV物料搬运系统小车数量配置规划[J]. 工业工程与管理, 2015, 20(4): 156-162. |
Huang Yijun. Planning on the Number of Vehicle Requirement for Body Shop AGV Material Handling System[J]. Industrial Engineering and Management, 2015, 20(4): 156-162. | |
[6] | Chawla V K. Automatic Guided Vehicles Fleet Size Optimization for Flexible Manufacturing System by Grey Wolf Optimization Algorithm[J]. Management Science Letters (S2417–2424), 2018, 8(2): 79-90. |
[7] | 宋绍京, 羊铭雨, 孙磊, 等. AGV数量规划及电池充电策略研究[J]. 长春理工大学学报(自然科学版), 2019, 42(6): 73-77. |
Song Shaojing, Yang Mingyu, Sun Lei, et al. Research on AGV Quantity Plan and Battery Charging Strategy[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(6): 73-77. | |
[8] | Gobal S L, Kasilingam R G. A Simulation Model for Estimating Vehicle Requirements in Automated Guided Vehicle Systems[J]. Computers & Industrial Engineering (S0360-8352), 1991, 21(1-4): 623-627. |
[9] | 陶翼飞, 陈君若, 刘美红, 等. 柔性制造环境下AGV车辆规模仿真优化研究[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(5): 1044-1048. |
Tao Yifei, Chen Junruo, Liu Meihong, et al. Study of AGV Fleet Size in Flexible Manufacturing Environment Based on Simulation Optimization[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2012, 36(5): 1044-1048. | |
[10] | 张远春, 范秀敏, 驹田邦久. 基于仿真优化的多种类型AGV数量配置优化方法[J]. 中国机械工程, 2011, 22(14): 1680-1685. |
Zhang Yuanchun, Fan Xiumin, Kunihisa Komada. Multi-Types AGVs Quantity Configuration Optimization Based on Simulation Optimization[J]. China Mechanical Engineering, 2011, 22(14): 1680-1685. | |
[11] | Um I, Cheon H, Lee H C. The Simulation Design and Analysis of a Flexible Manufacturing System with Automated Guided Vehicle System[J]. Journal of Manufacturing Systems (S0278-6125), 2009, 28(4): 115-122. |
[12] | Yifei T, Junruo C, Meihong L, et al. An Estimate and Simulation Approach to Determining the Automated Guided Vehicle Fleet Size in FMS[C]//2010 3rd International Conference on Computer Science and Information Technology. Chengdu: IEEE, 2010: 432-435. |
[13] | Mousavi M, Yap H J, Musa S N, et al. A Fuzzy Hybrid GA-PSO Algorithm for Multi-objective AGV Scheduling in FMS[J]. International Journal of Simulation Modelling (S1726-4529), 2017, 16(1): 58-71. |
[14] | 姜衡, 管贻生, 邱志成, 等. 基于响应面法的立式加工中心动静态多目标优化[J]. 机械工程学报, 2011, 47(11): 125-133. |
Jiang Heng, Guan Yisheng, Qiu Zhicheng, et al. Dynamic and Static Multi-objective Optimization of a Vertical Machining Center Based on Response Surface Method[J]. Journal of Mechanical Engineering, 2011, 47(11): 125-133. | |
[15] | Box G, Wilson K. On the Experimental Attainment of Optimum Conditions[J]. Journal of the Royal Statistical Society (S1369-7412), 1951, 13(1): 1-45. |
[16] | 李沛峰, 张彬乾, 陈迎春. 基于响应面和遗传算法的翼型优化设计方法研究[J]. 西北工业大学学报, 2012, 30(3): 395-401. |
Li Peifeng, Zhang Binqian, Chen Yingchun. An Effective Transonic Airfoil Optimization Method Using Response Surface Model (RSM)[J]. Journal of Northwestern Polytechnical University, 2012, 30(3): 395-401. | |
[17] | 田硕, 尚建勤. 基于均匀设计的喷丸指标响应面模型建立及应用[J]. 塑性工程学报, 2019, 26(4): 260-267. |
Tian Shuo, Shang Jianqin. Establishment and Application of Response Surface Model for Shot Peening Index Based on Uniform Design[J]. Journal of Plasticity Engineering, 2019, 26(4): 260-267. | |
[18] | 张春宜, 宋鲁凯, 费成巍, 等. 柔性机构动态可靠性分析的先进极值响应面方法[J]. 机械工程学报, 2017, 53(7): 47-54. |
Zhang Chunyi, Song Lukai, Fei Chengwei, et al. Advanced Extremum Response Surface Method for Dynamic Reliability Analysis on Flexible Mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7): 47-54. | |
[19] | Yang T, Tseng L. Solving a Multi-Objective Simulation Model Using a Hybrid Response Surface Method and Lexicographical Goal Programming Approach—A Case Study on Integrated Circuit Ink-marking Machines[J]. Journal of the Operational Research Society (S0160-5682), 2002, 53(2): 211-221. |
[20] | Zhang H, Jiang Z B, Guo C T. Simulation-based Optimization of Dispatching Rules for Semiconductor Wafer Fabrication System Scheduling by the Response Surface Methodology[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2009, 41(1/2): 110-121. |
[21] | Sajadi S M, Esfahani M M S, Sorensen K. Production Control in a Failure-Prone Manufacturing Network Using Discrete Event Simulation and Automated Response Surface Methodology[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2011, 53: 35-46. |
[22] | Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms[M]. Chichester, England: John Wiley & Sons, 2001. |
[23] | Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(2): 182-197. |
[1] | Zi'an Zhao, Hong Zhou, Yingjian Lei. Modeling and Optimization for Manufacturing Cell Scheduling Based on Improved Wolf Pack Algorithm and Simulation [J]. Journal of System Simulation, 2022, 34(2): 201-211. |
[2] | Yu Shaozheng, Sun Dongshi, Chen Jing, Li Yongchao. Research on Mechanical Configuration of Automatic Container Terminals Based on Simulation Optimization Method [J]. Journal of System Simulation, 2019, 31(12): 2750-2757. |
[3] | Li Jun, LinXuemei, ZhouJie. A Simulation Study of Appointment Rulesin CT Department [J]. Journal of System Simulation, 2018, 30(3): 976-986. |
[4] | Yang Mei, Xu Xiao, Peng Yong, Ju Rusheng, Huang Kedi, Jiao Peng. Research of Partial Synchronization-based Movement Modeling [J]. Journal of System Simulation, 2017, 29(9): 1880-1885. |
[5] | Lu Shaowen, Luo Xiaochuan. Design of Multi-Scenario Simulation of Molten Iron Logistics System with Cranes and Cross-Train AGVs [J]. Journal of System Simulation, 2017, 29(10): 2549-2555. |
[6] | Tang Jian, Ai Fuli, Shao Faming, Zhang Jiaojiao. Generate Network’s Disjoint MPs Based on SimEvents Simulation [J]. Journal of System Simulation, 2016, 28(4): 842-850. |
[7] | Wang Guorong, Chu Fei, Fan Hongkang, Tao Siyu, Zhu Hao, Jiang Long. Optimization Design for a New Type Throttle Valve of Managed Pressure Drilling Based on Response Surface Methodology [J]. Journal of System Simulation, 2015, 27(5): 1133-1137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||