Journal of System Simulation ›› 2017, Vol. 29 ›› Issue (8): 1631-1640.doi: 10.16182/j.issn1004731x.joss.201708001
Ren Bin1,2, Chen Chunyi1, Yang Huamin1
Received:
2015-09-21
Published:
2020-06-01
CLC Number:
Ren Bin, Chen Chunyi, Yang Huamin. Survey of Studies on Numerical Simulations of Optical-Wave Propagation in Atmospheric Turbulence[J]. Journal of System Simulation, 2017, 29(8): 1631-1640.
[1] 陈纯毅, 杨华民, 姜会林, 等. 大气光通信中大气湍流影响抑制技术研究进展[J]. 兵工学报, 2009, 30(6): 779-791. (Chen Chunyi, Yang Huamin, Jiang Huilin, et al.Research progress of mitigation technologies of turbulence effects in atmospheric optical communication[J]. Acta Armamentarii, 2009, 30(6): 779-791.) [2] Jason D.Schmidt. Numerical simulation of Optical Wave Propagation[M]. Bellingham, USA: SPIE, 2010: 149-184. [3] 王红帅, 姚永强, 刘立勇. 大气光学湍流模型研究进展[J]. 天文学进展, 2012, 30(3): 362-377. (Wang Hongshuai, Yao Yongqiang, Liu Liyong.A review of atmospheric optical turbulence modeling research[J]. Progress in Astronomy, 2012, 30(3): 362-377.) [4] William P, Burckel, Ryan N Gray. Turbulence phase screens based on polar-logarithmic spectral sampling[J]. Applied Optics (S1559-128X), 2013, 52(19): 4672-4680. [5] Rachel Rampy, Don Gavel, Daren Dillon, et al.Production of phase screens for simulation of atmospheric turbulence[J]. Applied Optics (S1559-128X), 2012, 51(36): 8769-8778. [6] 饶瑞中. 现代大气光学 [M]. 北京: 科学出版社, 2012: 368-414. (RAO Ruizhong.Modern atmospheric optical [M]. Beijing, China: Science Press, 2012: 368-414.) [7] 翟超, 武凤, 杨清波等. 自由空间光通信中大气光束传输数值模拟研究[J]. 中国激光, 2013, 40(5): 157-162. (Zhai Chao, Wu Feng, Yang Qingbo, et al.Simulation Research of Laser Beam Atmospheric Propagation in Free-Space Optical Communication[J]. Chinese Journal of Lasers, 2013, 40(5): 157-162.) [8] McGlamery B L. Restoration of turbulence degraded images[J]. Journal of the Optical Society of America (S1520-8540), 1967, 57(3): 293-296. [9] Xiang Jingsong.Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen[J]. Optics Express (S2156-7085), 2012, 20(1): 681-687. [10] Xiang Jingsong.Fast and accurate simulation of the turbulent phase screen using fast Fourier transform[J]. Optical Engineering (S0091-3286), 2013, 53(1): 016110. [11] Jeremy P Bos, Michael C Roggemann, V S Rao Gudimetla. Anisotropic non-Kolmogorov turbulence phase screens with variable orientation[J]. Applied Optics (S1559-128X), 2014, 54(8): 2039-2045. [12] Itay Naeh, Abraham Katzir.Perfectly correlated phase screen realization using sparse spectrum harmonic augmentation[J]. Applied Optics (S1559-128X), 2014, 53(27): 6168-6174. [13] Dai Guangming.Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction[C]// SPIE. USA: SPIE, 1994, 2201: 562-573. [14] Roddier N.Atmospheric wave front simulation using Zernike polynomials[J]. Optik (S0030-4026), 1990, 29(10): 1174-1180. [15] 陆长明, 黄惠明, 饶长辉, 等. 大气相位屏的协方差冲激函数产生法[J]. 光电工程, 2005, 32(8): 16-18. (Lu Changming, Huang Huiming, Rao Changhui, et al.Random phase screen generation by covariance method[J]. Opto-Electronic Engineering, 2005, 32(8):16-18.) [16] Lane R G, A Glindemann, J C Dainty. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media (S1072-954X), 1992, 2: 209-224. [17] 吴晗玲, 严海星, 李新阳, 等. 基于畸变相位波前分形特征产生矩形湍流相屏[J]. 光学学报, 2008, 29(1): 116-117. (Wu Hanling, Yan Haixing, Li Xinyang, et al.Generation of rectangular turbulence phase screens based on fractal characteristics of distorted wavefront[J]. Acta Optica Sinica, 2008, 29(1): 116-117.) [18] Byron Formwalt, Stephen Cain.Optimized phase screen modeling for optical turbulence[J]. Applied Optics (S1559-128X), 2006, 45(22): 5657-5669. [19] Hardin R H, Tappert F D.Application of the split step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation[J]. SIAM Review (S0036-1445), 1973, 15(423): 423-424. [20] Fleck J A, Morris J R, Feit M D.Time-dependent propagation of high-energy laser beams through the atmosphere[J]. Appl. Phys (S0946-2171), 1976, 10(2): 129-160. [21] Knepp D L.Multiple phase-screen calculation of the temporal behavior of stochastic waves[J]. Proc. IEEE, 1983, 71(6): 722-737. [22] Roopashree M B, Akondi Vyas, B Raghavendra Prasad. Grid size optimization for atmospheric turbulence phase screen simulations[M]. Toronto, Canada: OSA, 2011. [23] Michael A, Patterson, Anil V Rao. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming[J]. ACM Transactions on Mathematical Software (S0098-3500), 2014, 41(1): 1-37. [24] Olga Korotkova, Larry C Andrews.Model for a Partially Coherent Gaussian Beam in Atmospheric Turbulence with Application in Lasercom[J]. Optical Engineering (S0091-3286), 2004, 43(2): 330-341. [25] David Voelz, Xifeng Xiao.A Brief Review of Spatially Partially Coherent Beams for FSO Communications[C]// Proc. SPIE. USA: SPIE, 2009: 813-823. [26] 钱仙妹, 朱文越, 饶瑞中. 伪部分相干高斯-谢尔模型光束在湍流大气中传播的闪烁孔径平滑效应[J]. 物理学报, 2013, 62(4): 044203.(Qian Xianmei, Zhu Wenyue, Rao Ruizhong. The aperture averaging effect of scintillation of pseudo-partially Gaussian-schell model beam propagation in turbulent atmosphere [J]. Acta Physica Sinica, 2013, 62(4): 044203. [27] Halil T, Eyyuboglu. Bit error rate analysis of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams with the help of random phase screens[J]. Applied Optics (S1559-128X), 2014, 53(17): 3758-3763. [28] Li Yaqing, Wu Zhensen, Zhang Yuanyuan, et al.Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects[J]. Chinese Physics B (S1674-1056), 2014, 23(7): 409-416. [29] Alessandro Beghi, Angelo Cenedese, Andrea Masiero.Multiscale phase screen synthesis based on local principal component analysis[J]. Applied Optics (S1559-128X), 2013, 52(33): 7987-8000. [30] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径光传播数值仿真中相位屏间的选取[J]. 光学学报, 2008, 28(10): 1856-1860. (Qian Xianmei, Zhu Wenyue, Rao Ruizhong.Selection of between Phase Screens for Simulating Laser Propagation along an Inhomogeneous Turbulent Path[J]. Acta Optica Sinica, 2008, 28(10): 1856-1860.) [31] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值仿真的相位屏分布[J]. 物理学报, 2009, 58(9): 6633-6639. (Qian Xianmei, Zhu Wenyue, Rao Ruizhong.Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639. [32] Tian Yuzhen, Guo Jin, Wang Rui, et al.Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen[J]. Optics Express (S2156-7085), 2011, 19(19): 18216-18228. [33] Zeng Zhihong, Luo Xiujuan, Xia Aili, et al.Rytov variance equivalence through extended atmospheric turbulence and an arbitrary thickness phase screen in non-Kolmogorov turbulence[J]. Optik (S0030-4026), 2014, 125: 4092-4097. [34] 孙治, 秦小林, 冯勇. 基于多磁盘内存映射的并行湍流相屏生成方法[J]. 四川大学学报(工程科学版), 2014, 46(3): 102-108. (Sun Zhi, Qin Xiaolin, Feng Yong.Generation Method of Atmosphere Turbulence Phase Screen Based on Parallel Computation and Multi-disk Memory Mapping[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(3): 102-108.) [35] Wu Hanling, Yana Haixing, Lia Shushan, et al.New Algorithm for Generating a Very Long Rectangular Turbulent Phase Screen[C]// Proc. SPIE. USA: SPIE, 2009: 713121. [36] Vinay Sriram, David Kearney.An Ultra Fast Kolmogorov Phase Screen Generator Suitable For Parallel Implementation[J]. Optics Express (S2156-7085), 2007, 21(15): 13709-13714. [37] Zhang Baodong, Qin Shiqiao, Wang Xingshu.Accurate and fast simulation of Kolmogorov phase screen by combining spectral method with Zernike polynomials method[J]. Chinese Optics Letters (S1671-7694), 2010, 10(8): 969-971. [38] 赵小敏, 周波, 刘春媛, 等. GPU加速的傅里叶变换轮廓术并行计算方法[J]. 机械制造与自动化, 2013, 42(2): 141-144. (Zhao Xiaomin, Zhou Bo, Liu Chunyuan.GPU Accelerated Parallel Computing Method for Fourier Transform Profilometry[J]. Machine Building & Automation, 2013, 42(2): 141-144.) [39] 徐光勇. 大气湍流中的激光传输数值仿真及其影响分析 [D]. 成都: 电子科技大学, 2008: 51-58. (Xu Guangyong.Numerical simulation of laser transmission in atmospheric turbulence and its impact analysis [D]. Chengdu, China: University of Electronic Science and Technology, 2008: 51-58.) [40] Zhang Yu, Tang Qiuyan, Wang Jin, et al.Numerical simulator of atmospherically distorted phase screen for multibeam time-dependent scenario[J]. Applied Optics (S1559-128X), 2014, 53(22): 5008-5015. [41] Chen Chunyi, Yang Huamin, Tong Shoufeng, et al.Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence[J]. Applied Optics (S1559-128X), 2015, 54(18): 5797-5804. [42] Chen Chunyi, Yang Huamin, Tong Shoufeng, et al.Characterization of temporal pulse broadening for horizontal propagation in strong anisotropic atmospheric turbulence[J]. Optics Express (S2156-7085), 2015, 23(4): 4814-4828. [43] 陈纯毅, 杨华民, 姜会林, 等. 云层信道光通信链路误码率及改善途径分析[J]. 系统仿真学报, 2009, 21(5): 1245-1248. (Chen Chunyi, Yang Huamin, Jiang Huilin, et al.Analysis of Bit-Error-Rate and Performance Enhancement Ways for Optical Communication Link Through Cloud Channel[J]. Journal of System Simulation (S1004-731X), 2009, 21(5): 1245-1248.) |
[1] | Yue Kuizhi, Zhang Yuan, Cheng Liangliang, Yu Dazhao. Numerical Simulation of Aerodynamic Characteristics for Double-all-wing Unmanned Aerial Vehicle Based on Computational Fluid Dynamics Theory [J]. Journal of System Simulation, 2021, 33(7): 1654-1660. |
[2] | Zhou Chunhui, Huang Hongxun, Yi Wanxia, Chen Lijia, Wen Yuanqiao, Tan Linxu. Study on Navigation Simulation Method of Crude Oil Fleet in Bridge Area [J]. Journal of System Simulation, 2021, 33(3): 690-697. |
[3] | Han Guihua, Liu Yanan, Shao Junpeng, Zhang Cijun. Research on Cavitation Evolution Model in Venturi Tube [J]. Journal of System Simulation, 2020, 32(2): 164-171. |
[4] | Lin Jiaquan, Sun Fengshan, Li Yachong. Numerical Simulation of Spread and Infection Risk of Respiratory Pathogens in the Aircraft Cabin [J]. Journal of System Simulation, 2019, 31(8): 1541-1547. |
[5] | Pi Jun, Gao Shuwei, Huang Jiangbo, Huang Lei, Ma Long. Fatigue Life Prediction of Turbine Blades Based on QAR Data [J]. Journal of System Simulation, 2019, 31(6): 1165-1171. |
[6] | Huang Haibo, Yu Xudong, Liu Qingguo, Zhang Tao, Dong Jianan. Numerical Simulation for Airflow Field around Car Wheels [J]. Journal of System Simulation, 2019, 31(4): 641-647. |
[7] | Wei Wenli, Lou Weili, Li Panpan, Liu Yuling. Simulation of Gas-liquid Mixing Flow in a Stirred Tank with Inverted Umbrella-type Surface Aerator [J]. Journal of System Simulation, 2019, 31(4): 696-701. |
[8] | Zhang Fan, Yang Yuanhua, He Xiaoxu, Deng Yu. Numerical Simulation Analysis of Anti-Blast impact of Underground Rescue Capsule Based on LS-DYNA [J]. Journal of System Simulation, 2019, 31(12): 2853-2858. |
[9] | Wu Jiaquan, Li Hongyan, Ye Fei, Zhang Xinyu, Ma Kun. Finite Element Numerical Simulation of Pre-damaged Reinforced Concrete Beam [J]. Journal of System Simulation, 2018, 30(9): 3437-3444. |
[10] | Chen Chunyi, Yang Huamin, Ren Bin, Jiang Zhengang. Modeling and Computer Simulation of Numerical Experiments on Laser Propagation through Atmospheric Turbulence [J]. Journal of System Simulation, 2018, 30(6): 2133-2143. |
[11] | Liu Shuang, Lü Chao, Rao Yong, Wang Shiming. Performance Analysis and Research of Shark Fin Structure Based on Simulation [J]. Journal of System Simulation, 2018, 30(6): 2398-2404. |
[12] | Li Chunxi, Zhang Shuo, Ye Xuemin. Effect of Interfacial Curvature on Drag Reduction of Superhydrophobic Microchannels [J]. Journal of System Simulation, 2018, 30(6): 2405-2413. |
[13] | Wang Jisen, Jia Qian, Chen Chen, Zhang Yaping, Du Jiang. Research of Turbulence Model Parameters Correction for Oil Flow of Pipeline [J]. Journal of System Simulation, 2018, 30(5): 1665-1671. |
[14] | Ma Zewen, Liu Tao, Sun Xudong. CFD Based Analysis and Improvement of the Flow Field of Stirred Tank Reactor for Crystallization [J]. Journal of System Simulation, 2018, 30(5): 1900-1907. |
[15] | Liu Ling, Xiao Liping, Li Xilin. Simulation of Migration of Hexavalent Chromium in Groundwater [J]. Journal of System Simulation, 2018, 30(2): 560-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||