[1] 狄勤丰, 沈琛, 王掌洪, 等. 纳米吸附法降低岩石微孔道水流阻力的实验研究[J]. 石油学报, 2009, 30(1): 125-128. Di Qinfeng, Shen Chen, Wang Zhanghong, et al.Experimental Research on Drag Reduction of Flow in Microchannels of Rocks Using Nano-particle Adsorption Method[J]. Acta Petrolei Sinica, 2009, 30(1): 125-128. [2] 侯智敏. 水下航行器低表面能涂层减阻研究[D]. 西安: 西北工业大学, 2007. Hou Zhimin.Research on drug reduction of Low Surface Energy Film of Underwater Crafts[D]. Xi'an: Northwestern Polytechnical University, 2007. [3] Cassie A B D, Baxter S. Wettability of Porous Surfaces[J]. Transactions of the Faraday Society (S0014-7672), 1944, 40(3): 546-551. [4] 宋保维, 任峰, 胡海豹, 等. 表面张力对疏水微结构表面减阻的影响[J]. 物理学报, 2014, 63(5): 54708. Song Baowei, Ren Feng, Hu Haibao, et al.Drag Reduction on Micro-structured Hydrophobic Surfaces due to Surface Tension Effect[J]. Acta Physica Sinica, 2014, 63(5): 54708. [5] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46: 179-225. Lü Pengyu, Xue Yahui, Duan Huiling.Stability and Evolution of Liquid-gas Interfaces on Super- hydrophobic Surfaces[J]. Advances in Mechanics, 2016, 46: 179-225. [6] Bonnivard M, Dalibard A L, Gérard-Varet D.Computation of the Effective Slip of Rough Hydrophobic Surfaces via Homogenization[J]. Mathematical Models and Methods in Applied Sciences (S0218-2025), 2014, 24(11): 2259-2285. [7] 胡海豹, 鲍路瑶, 黄苏和. 不同润湿性纳米通道内库埃特流动的模拟[J]. 力学学报, 2013, 45(4): 507-514. Hu Haibao, Bao Luyao, Huang Suhe.Simulation of the Liquid Couette Flow in a Nano-channel with Different Wettability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 507-514. [8] Philip J R.Flows Satisfying Mixed No-slip and No-shear Conditions[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP (S1420-9039), 1972, 23(3): 353-372. [9] Lauga E, Stone H A.Effective Slip in Pressure-driven Stokes Flow[J]. Journal of Fluid Mechanics (S0022-1120), 2003, 489(6): 55-77. [10] Teo C J, Khoo B C.Analysis of Stokes Flow in Microchannels with Superhydrophobic Surfaces Containing a Periodic Array of Micro-grooves[J]. Microfluidics and nanofluidics (S1613-4990), 2009, 7(3): 353-382. [11] Nizkaya T V, Asmolov E S, Vinogradova O I.Gas Cushion Model and Hydrodynamic Boundary Conditions for Superhydrophobic Textures[J]. Physical Review E (S1550-2376), 2014, 90(4): 043017. [12] Davies J, Maynes D, Webb BW, et al.Laminar Flow in a Microchannel with Superhydrophobic Walls Exhibiting Transverse Ribs[J]. Physics of Fluids (S1089-7666), 2006, 18(8): 087110. [13] 常允乐. 表面润湿性对微通道界面阻力影响的研究[D]. 大连: 大连海事大学, 2013. Chang Yunle.Effects of Surface Wettability on Interfacial Drag in Micro-channel[D]. Dalian: Dalian Maritime University, 2013. [14] 刘占一, 宋保维, 黄桥高, 等. 基于壁面滑移的疏水通道减阻特性仿真研究[J]. 系统仿真学报, 2012, 24(5): 971-974. Liu Zhanyi, Song Baowei, Huang Qiaogao, et al.Drag-reduction Characteristic Simulation Investigation about Hydrophobic Channels Based on Wall slip[J]. Journal of System Simulation, 2012, 24(5): 971-974. [15] Ou J, Perot B, Rothstein J P.Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces[J]. Physics of Fluids (S1089-7666), 2004, 16(12): 4635-4643. [16] Choi C H, Ulmanella U, Kim J, et al.Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels[J]. Physics of Fluids (S1089-7666), 2006, 18(8): 087105. [17] 霍素斌, 于志家, 李艳峰, 等. 超疏水表面微通道内水的流动特性[J]. 化工学报, 2007, 58(11): 2721-2726. Huo Subin, Yu Zhijia, Li Yanfeng, et al.Flow Characteristics of Water in Microchannel with Super-Hydrophobic Surface[J]. Journal of Chemical Industry and Engineering, 2007, 58(11): 2721-2726. [18] 卢思, 姚朝晖, 郝鹏飞, 等. 具有微纳结构超疏水表面的槽道减阻特性研究[J]. 中国科学: 物理学力学天文学, 2010, 40(7): 916-924. Lu Si, Yao Chaohui, Hao Pengfei, et al.Drag Reduction of Micro-nano-structure Channels with Super- hydrophobic Surface[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(7): 916-924. [19] Tsai P, Peters A M, Pirat C, et al.Quantifying Effective Slip Length over Micropatterned Hydrophobic Surfaces[J]. Physics of Fluids (S1089-7666), 2009, 21(11): 112002. [20] Teo C J, Khoo B C.Flow past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature[J]. Microfluidics and Nanofluidics (S1613- 4990), 2010, 9(2/3): 499-511. [21] Davis A M J, Lauga E. Geometric Transition in Friction for Flow over a Bubble Mattress[J]. Physics of Fluids (S1089-7666), 2009, 21(1): 011701. [22] Karniadakis G E M, Beskok A, Gad-el-Hak M. Micro Flows: Fundamentals and Simulation[J]. Applied Mechanics Reviews (S0003-6900), 2002, 55(4): 76. [23] Gaddam A, Garg M, Agrawal A, et al.Modeling of Liquid-gas Meniscus for Textured Surfaces: Effects of Curvature and Local Slip Length[J]. Journal of Micromechanics and Microengineering (S1361-6439), 2015, 25(12): 125002. [24] Maynes D, Jeffs K, Woolford B, et al.Laminar Flow in a Microchannel with Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction[J]. Physics of Fluids (S1089-7666), 2007, 19(9): 093603. [25] Blevins R D.Applied Fluid Dynamics Handbook[M]. New York, Van Nostrand Reinhold Co, 1984. |