1 |
Overbeck R S, Donner C, Ramamoorthi R. Adaptive Wavelet Rendering[J]. ACM Transactions on Graphics (S0730-0301), 2009, 28(5): 1-12.
|
2 |
Rousselle F, Knaus C, Zwicker M. Adaptive Sampling and Reconstruction Using Greedy Error Minimization[J]. ACM Transactions on Graphics (S0730-0301), 2011, 30(6): 1-12.
|
3 |
Rousselle F, Knaus C, Zwicker M. Adaptive Rendering with Non-Local Means Filtering[J]. ACM Transactions on Graphics(S0730-0301), 2012, 31(6): 1-11.
|
4 |
Delbracio M, Muse P, Buades A, et al. Boosting Monte Carlo Rendering by Ray Histogram Fusion[J]. ACM Transactions on Graphics(S0730-0301), 2014, 33(1): 1-15.
|
5 |
Lehtinen J, Aila T, Chen J W, et al. Temporal Light Field Reconstruction for Rendering Distributed Effects[J].ACM Transactions on Graphics(S0730-0301), 2011, 30(4): 1-12.
|
6 |
Mara M, Mcguire M, Bitterli B, et al. An Efficient Denoising Algorithm for Global Illumination[C]// High Performance Graphics. ACM: 2017: 1-7.
|
7 |
Belcour Laurent, Bala Kavita, Soler Cyril. A Local Frequency Analysis of Light Scattering and Absorption[J]. ACM Transactions on Graphics(S0730-0301), 2014, 33(5): 1-17.
|
8 |
Moon B, Iglesias-Glesias-Guitian J A, McDonagh S. Noise Reduction on G-Buffers for Monte Carlo fiLtering[J]. Computer Graphics Forum (S0167-7055), 2017, 36(8): 600-612.
|
9 |
Bitterli B, Rousselle F, Moon B. Nonlinearly Weighted Firstorder Regression for Denoising Monte Carlo Renderings[J]. Comput Graph Forum(S1467-8659), 2016, 35(4): 107-117.
|
10 |
Boughida M, Boubekeur T. Bayesian Collaborative Denoising for Monte Carlo Rendering[J]. Comput Graphics Forum(S1467-8659), 2017, 36(4): 137-153.
|
11 |
Yang Xin, Wang Dawei, Hu Wenbo, et al. Fast Reconstruction for Monte Carlo Rendering Using Deep Convolutional Networks[J]. IEEE Access(S1531-1309), 2019, 7: 21177-21187.
|
12 |
Kettunen M, Hrknen E, Lehtinen J. Deep Convolutional Reconstruction for Gradient-Domain Rendering[J]. ACM Transactions on Graphics (S0730-0301), 2019, 38(4): 1-12.
|
13 |
Gharbi M, Li T M, Aittala M, et al. Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network[J]. ACM Transactions on Graphics(S0730-0301), 2019, 38(4): 1-12.
|
14 |
Bauszat Pablo, Eisemann Martin, Eisemann Elmar. General and Robust Error Estimation and Reconstruction for Monte Carlo Rendering[J]. Computer Graphics Forum(S0167-7055), 2015, 34(2): 597-608.
|
15 |
Moon B, McDonagh S, Mitchell K, et al. Adaptive Polynomial Rendering[J]. ACM Transactions on Graphics(S0730-0301), 2016, 35(4): No. 40.
|
16 |
Vicini Delio, Adler David, Novák Jan, et al. Denoising Deep Monte Carlo Renderings[J]. Computer Graphics Forum (S0167-7055), 2018, 38(4): 316-327.
|
17 |
Yuan Yaoshen, Yu Leiming, Fang Qianqian. Denoising in Monte Carlo Photon Transport Simulation Using GPU-Accelerated Adaptive Non-Local Mean Filter[C] // Clinical and Translational Biophotonics. 2018.
|
18 |
Mazi M, Vicini D, Zwicker M. Regularizing Imager Econstruction for Gradient-Domain Rendering with Feature Patches[J]. Computer Graphics Forum (S0167-7055), 2016, 35(2): 263-273.
|
19 |
He K, Sun J, Tang X. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S1939-3539), 2010, 35(6): 1397-1409.
|
20 |
Buades A, Coll B, Morel J. A Review of Image Denoising Algorithms, with a New One [J]. SIAM Journal on Multiscale Modeling and Simulation (S0036-1445), 2005, 4(2): 490-530.
|
21 |
Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity[J]. IEEE Transaction on Image Processing (S1057-7149), 2004, 13(4): 600-612.
|