Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (6): 1267-1274.doi: 10.16182/j.issn1004731x.joss.20-1062
• Modeling Theory and Methodology • Previous Articles Next Articles
Received:2020-12-31
Revised:2021-04-16
Online:2022-06-30
Published:2022-06-16
Contact:
Xinglin Hou
E-mail:zhoupp@czu.cn;houxl@czu.cn
CLC Number:
Peipei Zhou, Xinglin Hou. An Unsupervised Deep Neural Network for Image Fusion[J]. Journal of System Simulation, 2022, 34(6): 1267-1274.
Table 1
MEF-SSIM scores of fusion images with two-exposure images using different methods on 11 test sequences.
| HDR场景 | Shen11 | Li13 | Ma15 | Hou16 | DF19-add | DF19-L1 | MEF-Net20 | 本文方法 |
|---|---|---|---|---|---|---|---|---|
| Balloons | 0.932 3 | 0.908 2 | 0.987 9 | 0.932 7 | 0.947 8 | 0.963 2 | 0.978 3 | 0.989 4 |
| Belgium house | 0.926 6 | 0.884 9 | 0.978 6 | 0.918 5 | 0.937 9 | 0.958 4 | 0.974 3 | 0.989 0 |
| Chinese garden | 0.922 9 | 0.917 9 | 0.993 5 | 0.923 5 | 0.941 3 | 0.985 3 | 0.987 1 | 0.993 3 |
| House | 0.925 2 | 0.830 6 | 0.964 2 | 0.916 5 | 0.901 3 | 0.765 7 | 0.935 0 | 0.966 5 |
| Landscape | 0.899 8 | 0.905 2 | 0.994 8 | 0.921 9 | 0.984 2 | 0.990 8 | 0.981 6 | 0.989 4 |
| Lighthouse | 0.912 8 | 0.914 9 | 0.984 3 | 0.933 4 | 0.952 5 | 0.953 3 | 0.969 2 | 0.986 3 |
| Madison capitol | 0.893 5 | 0.800 5 | 0.981 2 | 0.871 2 | 0.914 0 | 0.906 6 | 0.958 1 | 0.984 1 |
| Office | 0.904 4 | 0.725 6 | 0.983 9 | 0.893 8 | 0.948 6 | 0.912 3 | 0.955 5 | 0.983 9 |
| Room | 0.920 6 | 0.853 3 | 0.978 2 | 0.915 1 | 0.938 4 | 0.939 6 | 0.967 8 | 0.987 1 |
| Tower | 0.912 8 | 0.858 6 | 0.986 0 | 0.910 1 | 0.915 1 | 0.921 9 | 0.959 1 | 0.988 5 |
| Venice | 0.903 9 | 0.834 9 | 0.987 9 | 0.904 6 | 0.935 9 | 0.961 4 | 0.965 7 | 0.982 7 |
| Average | 0.914 1 | 0.857 7 | 0.983 7 | 0.912 8 | 0.937 9 | 0.932 6 | 0.966 5 | 0.985 5 |
| 1 | Ma K, Li H, Yong H, et al. Robust Multi-Exposure Image Fusion: a Structural Patch Decomposition Approach[J]. IEEE Transactions on Image Processing(S1057-7149), 2017, 26(5): 2519-2532. |
| 2 | 魏利胜, 张平改. 基于分层模型的图像快速融合方法研究[J]. 系统仿真学报, 2016, 28(6): 1372-1379. |
| Wei Lisheng, Zhang Pingai. Fast Fusion Method for Multi-focus Image Based on Hierarchical Model[J]. Journal of System Simulation, 2016, 28(6): 1372-1379. | |
| 3 | 马夏一, 范方晴, 卢陶然, 等. 基于图像块分解的多曝光图像融合去鬼影算法[J]. 光学学报, 2019, 39(9): 132-140. |
| Ma Xiayi, Fan Fangqing, Lu Taoran, et al. Multi-Exposure Image Fusion De-Ghosting Algorithm Based on Image Block Decomposition[J]. Acta Optica Sinica, 2019, 39(9): 132-140. | |
| 4 | Goshtasby A A. Fusion of Multi-Exposure Images[J]. Image and Vision Computing(S0262-8856), 2005, 23(6): 611-618. |
| 5 | Ma Keda, Zhou Wang. Multi-Exposure Image Fusion: A Patch-Wise Approach[C]//2015 IEEE International Conference on Image Processing (ICIP). Quebec: IEEE, 2015: 1717-1721. |
| 6 | Burt P J, Kolczynski R J. Enhanced Image Capture Through Fusion[C]//1993 (4th) International Conference on Computer Vision. IEEE, 1993: 173-182. |
| 7 | Raman S, Chaudhuri S. Bilateral Filter Based Compositing for Variable Exposure Photography[C]//Eurographics. The Eurographics Association, 2009: 1-4. |
| 8 | Shen R, Cheng I, Shi J, et al. Generalized Random Walks for Fusion of Multi-Exposure Images[J]. IEEE Transactions on Image Processing(S1057-7149), 2011, 20(12): 3634-3646. |
| 9 | Li S, Kang X, Hu J. Image Fusion with Guided Filtering[J]. IEEE Transactions on Image processing(S1057-7149), 2013, 22(7): 2864-2875. |
| 10 | Hou X, Luo H, Qi F, et al. Guided Filter-Based Fusion Method for Multiexposure Images[J]. Optical Engineering(S0091-3286), 2016, 55(11): 113101. |
| 11 | Shen J, Zhao Y, Yan S, et al. Exposure Fusion Using Boosting Laplacian Pyramid[J]. IEEE Transactions on Cybernetics(S2168-2267), 2014, 44(9): 1579-1590. |
| 12 | Wang L, Xiong Y, Wang Z, et al. Temporal Segment Networks for Action Recognition in Videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0182-8828), 2018, 41(11): 2740-2755. |
| 13 | Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//IEEE International Conference on Computer Vision. IEEE, ICCV, 2017: 2980-2988. |
| 14 | Fu J, Liu J, Tian H, et al. Dual Attention Network for Scene Segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 3146-3154. |
| 15 | Divakar N, Venkatesh Babu R. Image Denoising Via CNNs: an Adversarial Approach[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2017: 80-87. |
| 16 | Prabhakar K R, Babu R V. Ghosting-Free Multi-Exposure Image Fusion in Gradient Domain[C]// 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2016: 1766-1770. |
| 17 | Eilertsen G, Kronander J, Denes G, et al. HDR Image Reconstruction from a Single Exposure Using Deep CNNs[J]. Acm Transactions on Graphics(S0730-0301), 2017, 36(6): 1-15. |
| 18 | Prabhakar K R, Srikar V S, Babu R V. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs[C]// 2017 IEEE International Conference on Computer Vision. IEEE Computer Society, 2017: 4714-4722. |
| 19 | Li H, Wu X J. DenseFuse: A Fusion Approach to Infrared and Visible Images[J]. IEEE Transactions on Image Processing(S1057-7149), 2018, 28(5): 2614-2623. |
| 20 | Ma K, Duanmu Z, Zhu H, et al. Deep Guided Learning for Fast Multi-Exposure Image Fusion[J]. IEEE Transactions on Image Processing(S1057-7149), 2019, 29(1): 2808-2819. |
| 21 | Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//International Conference on Machine Learning. PMLR, 2015: 448-456. |
| 22 | Nair V, Hinton G E. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]// International Conference on International Conference on Machine Learning. Omnipress, 2010: 807-814. |
| 23 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J/OL]. [2020-12-14]. . |
| 24 | Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment: from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing(S1057-7149), 2004, 13(4): 600-612. |
| 25 | Zhang J, Shao J, Chen J, et al. PFNet: an Unsupervised Deep Network for Polarization Image Fusion[J]. Optics Letters(S0146-9592), 2020, 45(6): 1507-1510. |
| 26 | 周培培. 无监督深度多曝光图像融合网络[EB/OL]. [2020-12-14]. . |
| Zhou Peipei. Unsupervised Deep Multi-Exposure Image Fusion Network [EB/OL]. [2020-12-14]. . | |
| 27 | Ma K, Zeng K, Wang Z. Perceptual Quality Assessment for Multi-Exposure Image Fusion[J]. IEEE Transactions on Image Processing(S1057-7149), 2015, 24(11): 3345-3356. |
| [1] | Wang Xiao, Li Xiangyang, Liang Feng, Zhang Zhili. Research on Infrared and Visible Light Fusion Method Based on ResNet-50 and Laplacian Filtering [J]. Journal of System Simulation, 2025, 37(12): 3202-3211. |
| [2] | Shi Lanxi, Yan Wenxu, Ni Hongyu, Zhao Feng. Research on Dynamic Scene SLAM Based on Improved Object Detection [J]. Journal of System Simulation, 2024, 36(4): 1028-1042. |
| [3] | Su Tong, Wang Ying, Deng Qiyang, Li Zhaobin. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5 [J]. Journal of System Simulation, 2024, 36(10): 2413-2422. |
| [4] | Wei Dong, Liu Huan, Zhang Xiaohan, Li Changkai, Sun Tianyi, Zhang Ziyou. Multi-view Depth Estimation Based on Adaptive Space Feature Enhancement [J]. Journal of System Simulation, 2024, 36(1): 110-119. |
| [5] | Tong Weiguo, Pang Xuechun, Zhu Genghong. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4): 883-891. |
| [6] | Cai Xingquan, Tu Yuxin, Ge Yakun, Yang Zhe. Real-time Leaf Recognition Method Based on CNN Network and Multi-task Loss Function [J]. Journal of System Simulation, 2020, 32(7): 1279-1286. |
| [7] | Ji Weixi, Du Meng, Peng Wei, Xu Jie. Research on Gear Appearance Defect Recognition Based on Improved Faster R-CNN [J]. Journal of System Simulation, 2019, 31(11): 2198-2205. |
| [8] | Yang Zhenshan, Yue Wenjiao. Elevator Traffic Pattern Recognition with FCM Clustering Based Fuzzy Neural Network [J]. Journal of System Simulation, 2018, 30(4): 1433-1439. |
| [9] | Jin Weidong, Hu Yanhua, Tang Peng, Li Wei. Detailed Enhancement of Forward Vehicle Video Images Based on Structured Forest [J]. Journal of System Simulation, 2018, 30(12): 4602-4610. |
| [10] | Li Haiyang, Cao Weiguo, Li Shirui, Tao Kelu, Li Hua. Progressive Image Denoising Algorithm [J]. Journal of System Simulation, 2017, 29(2): 282-294. |
| [11] | Xie Shiqin, Zhao Tianzhong, Wang Wei, Shi Jingjing. Study on Fusion Algorithms of GF-2 Satellite Image [J]. Journal of System Simulation, 2017, 29(11): 2742-2747. |
| [12] | Luo Xiao, Li Weimin. Novel Distance Measure Between Intuitionistic Fuzzy Sets [J]. Journal of System Simulation, 2017, 29(10): 2360-2372. |
| [13] | Shen Weihua, Wang Shengbo, Pan Zhigeng. New 2D Flow Visualization Method Based on Mutual Information and Image Fusion [J]. Journal of System Simulation, 2015, 27(8): 1796-1800. |
| [14] | Wen Kaifeng, Li Bingjian. Title Medical Image Fusion Based on Multi-scale Coefficient Decomposition Framework [J]. Journal of System Simulation, 2015, 27(10): 2615-2621. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
