[1] 吴云, 雷建文, 鲍丽山, 等. 基于改进灰色关联分析与蝙蝠优化神经网络的短期负荷预测[J]. 电力系统自动化, 2018, 42(20): 67-74. Wu Yun, Lei Jianwen, Bao Lishan, et al.Short-term Load Forecasting Based on Improved Grey Relational Analysis and Neural Network Optimized[J]. Automation of Electric Power Systems, 2018, 42(20): 67-74. [2] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. Lu Jixiang, Zhang Qipei, Yang Zhihong, et al.Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. [3] 李东东, 覃子珊, 林顺富, 等. 基于混沌时间序列法的微网短期负荷预测[J]. 电力系统及其自动化学报, 2015, 27(5): 14-18. Li Dongdong, Tan Zishan, Lin Shunfu, et al.Short-term Load Forecasting for Microgrid Based on Method of Chaotic Time Series[J]. Proceedings of the CSU-EPSA, 2015, 27(5): 14-18. [4] Mahmud M A.Isolated Area Load Forecasting using Linear Regression Analysis: Practical Approach[J]. Energy and Power Engineering (S1949-243X), 2011, 3(4): 547-550. [5] 王科, 陈丽华. 基于卡尔曼滤波的节假日短期负荷预测[J]. 电气技术, 2014, 15(1): 4-6. Wang Ke, Chen Lihua.Holiday Short-term Load Forecasting Based on Kalman Filter[J]. Electrical Engineering, 2014, 15(1): 4-6. [6] 吴倩红, 高军, 侯广松, 等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15): 67-72, 92. Wu Qianhong, Gao Jun, Hou Guangsong, et al.Short-term Load Forecasting Support Vector Machine Algorithm Based on Multi-source Heterogeneous Fusion of Load Factors[J]. Electrical Automation, 2016, 40(15): 67-72, 92. [7] 张宗华, 赵京湘, 卢享, 等. 基于遗传算法的BP神经网络在电力负载预测中的应用[J]. 计算机工程, 2017, 43(10): 277-282, 288. Zhang Zonghua, Zhao Jingxiang, Lu Xiang, et al.Application of BP Neural Network Based on Genetic Algorithmin Power Load Forecasting[J]. Computer Engineering, 2017, 43(10): 277-282, 288. [8] Jiao R, Zhang T, Jiang Y, et al.Short-Term Non-Residential Load Forecasting Based on Multiple Sequences LSTM Recurrent Neural Network[J]. IEEE Access (S2169-3536), 2018, 1(6): 59438-59448. [9] Tan M, Yuan S, Li S, et al.Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning[J]. IEEE Transactions on Power Systems (S0885-8950), 2020, 35(4): 2937-2948. [10] 熊阳辉. 基于改进PSO-LSSVM的短期负荷预测系统的设计与实现[D]. 合肥: 安徽大学, 2019. Xiong Yanghui.Design and Implementation of Short-term Load Forecasting System Based on Improved PSO-LSSVM[D]. Hefei: Anhui University, 2019. [11] Kong W, Dong Z Y, Jia Y, et al.Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network[J]. IEEE Transactions on Smart Grid (S1949-3053), 2019, 1(10): 841-851. [12] 彭秀艳, 张彪. 基于EMD-PSO-LSTM组合模型的船舶运动姿态预测[J]. 中国惯性技术学报, 2019, 27(4): 421-426. Peng Xiuyan, Zhang Biao.Ship Motion Attitude Prediction based on EMD-PSO-LSTM Integrated Model[J]. Journal of Chinese Inertial Technology, 2019, 27(4): 421-426. [13] 康岚兰, 董文永, 宋婉娟, 等. 无惯性自适应精英变异反向粒子群优化算法[J]. 通信学报, 2017, 38(8): 66-78. Kang Lanlan, Dong Wenyong, Song Wanjuan, et al.Non-inertial Opposition-based Particle Swarm Optimization with Adaptive Elite Mutation[J]. Journal on Communications, 2017, 38(8): 66-78. [14] 李万, 冯芬玲, 蒋琦玮. 改进粒子群算法优化LSTM神经网络的铁路客运量预测[J]. 铁道科学与工程学报, 2018, 15(12): 3274-3280. Li Wan, Feng Fenling, Jiang Qiwei.Prediction for Railway Passenger Volume based on Modified PSO Optimized LSTM Neural Network[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3274-3280. [15] 宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报, 2019, 45(12): 2533-2562. Song Gang, Zhang Yunfeng, Bao Fangxun, et al.Stock Prediction Model Based on Particle Swarm Optimization LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2533-2562. [16] 陈亚红, 马丽, 穆钢, 等. 两种短期负荷预测精度考核标准的比较[J]. 电力系统自动化, 2003, 27(17): 73-77. Chen Yahong, Ma Li, Mu Gang, et al.Comparison Studies of Two Types of Accuracy Criteria for Short-term Load Forecast[J]. Electrical Automation, 2003, 27(17): 73-77. |