[1] 陈开岩. 矿井通风系统优化理论及应用[M]. 徐州: 中国矿业大学出版社, 2003. Chen Kaiyan.The Theory and Application of Mine Ventilation System Optimization[M]. Xuzhou: China University of Mining and Technology Press, 2003. [2] 刘剑. 流体网络理论[M]. 北京: 煤炭工业出版社, 2002. Liu Jian.The Fluid Network Theory[M]. Beijing: China Coal Industry Publishing House, 2002. [3] 张庆华, 姚亚虎, 赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术, 2020, 48(2): 97-103. Zhang Qinghua, Yao Yahu, Zhao Jiyu.Status of Mine Ventilation Technology in China and Prospectsfor Intelligent Development[J]. Coal Science and Technology, 2020, 48(2): 97-103. [4] 苏义鑫, 戈乐, 程诗佳. 基于改进遗传算法和BP神经网络的矿井通风风速预测[J]. 河南理工大学学报(自然科学版), 2017, 36(4): 20-25. Su Yixin, Ge Le, Cheng Shijia.Mine Ventilation Rate Forecasting Based on Improved Genetic Algorithm and BP neural Network[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(4): 20-25. [5] 郭一楠, 王春, 杨继超. 基于文化粒子群优化算法的矿井通风网络[J]. 东南大学学报(自然科学版), 2013, 43(增1): 48-53. Guo Yinan, Wang Chun, Yang Jichao.Mine Ventilation Network Based on Cultural Particle Swarm Optimization Algorithm[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1): 48-53. [6] 厍向阳, 常新坦, 孙艺珍. 基于遗传算法的通风网络两步法风流调节优化算法[J]. 中南大学学报(自然科学版), 2011, 42(9): 2729-2736. She Xiangyang, Chang Xintan, Sun Yizhen.Genetic Algorithm-Based Two-Step Ventilation Network Optimization Algorithm for Ventilation Network[J]. Journal of Central South University (Natural Science Edition), 2011, 42(9): 2729-2736. [7] 厍向阳, 常新坦. 基于遗传算法的一体化通风网络优化算法[J]. 中南大学学报(自然科学版), 2011(6): 1676-1684. She Xiangyang, Chang Xintan.Integrative Optimization Algorithm of Min Ventilation Networks Based on Genetic Algorithm[J]. Journal of Central South University (Science and Technology), 2011(6): 1676-1684. [8] 张兴国, 周玉. 基于ACPSO算法的矿井通风网络解算研究[J]. 辽宁工程技术大学学报(社会科学版), 2018, 20(4): 305-311. Zhang Xingguo, Zhou Yu.Study on ACPSO Algorithm for Mine Ventilation Network[J]. Journal of Liaoning Technical University (Social Science Edition), 2018, 20(4): 305-311. [9] 王海宁, 彭斌, 彭家兰. 基于三维仿真的矿井通风系统及其优化研究[J]. 中国安全科学学报, 2013, 23(2): 123-128. Wang Haining, Peng Bin, Peng Jialan.Study on Mine Ventilation System and Its Optimization Based on 3D Simulation[J]. China Safety Science Journal, 2013, 23(2): 123-128. [10] 吴新忠, 胡建豪, 魏连江. 矿井通风网络的反向增强型烟花算法优化研究[J]. 工况自动化, 2019, 45(10): 17-22, 67. Wu Xinzhong, Hu Jianhao, Wei Lianjiang.Research on Opposition Based Enhanced Fireworks Algorithm Optimization for Mine Ventilation Network[J]. Industry and Mine Automation, 2019, 45(10): 17-22, 67. [11] 黄元平, 李湖生. 矿井通风网络优化调节问题的非线性规划解法[J]. 煤炭学报, 1995 (1): 14-20. Huang Yuanping, Li Husheng.Solution of Problems Relevant to Optimal Control of Mine Ventilation Network by Non-linear Programming Technique[J]. Journal of China Coal Society, 1995(1): 14-20. [12] 潘昊, 侯清兰. 基于粒子群算法的BP网络学习研究[J]. 计算机工程与应用, 2006, 42(16): 41-42. Pan Hao, Hou Qinglan.Study on BP Network Learning Based on Particle Swarm Optimization[J]. Computer Engineering and Applications, 2006, 42(16): 41-42. [13] 刘锦萍, 郁金祥. 基于改进的粒子群算法的多元线性回归模型参数估计[J]. 计算机工程与科学, 2010, 32(4): 101-105. Liu Jinping, Yu Jinxiang.Multiple Linear Regression Model Parameter Estimation based on Improved Particle Swarm Optimization[J]. Computer Engineering and Science, 2010, 32(4): 101-105. [14] 陶海龙, 李小平, 张胜召, 等. 基于IPSO-BP神经网络的铁路客运量预测[J]. 铁道运输与经济, 2011, 33(9): 78-82. Tao Hailong, Li Xiaoping, Zhang Shengzhao, et al.Railway Passenger Volume Forecast Based on IPSO-BP Neural Network[J]. Railway Transport and Economy, 2011, 33(9): 78-82. [15] 陶海龙. 基于混合智能算法的铁路运量预测研究[D]. 兰州: 兰州交通大学, 2012. Tao Hailong.Research on Railway Traffic Volume Prediction Based on Hybrid Intelligent Algorithm [D]. Lanzhou: Lanzhou Jiaotong University, 2012. [16] Tsai H C.Unified Particle Swarm Delivers High Efficiency to Particle Swarm Optimization[J]. Applied Soft Computing (S1568-4946), 2017, 55(1): 371-383. [17] Mi Y Q, Gao Y L.The Improved Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems[J]. Journal of Jiangxi Normal University (Natural Science)(S1000-5862), 2017, 55(1): 371-383. [18] 李淑香. 基于模拟退火的粒子群算法在函数优化中的应用[J]. 沈阳工业大学学报, 2019, 41(6): 664-668. Li Shuxiang.Application of Particle Swarm Optimization Algorithm Based on Simulated Annealing in Function Optimization[J]. Journal of Shenyang University of Technology, 2019, 41(6): 664-668. [19] 高鹰, 谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用, 2004(1): 47-50. Gao Ying, Xie Shengli.Particle Swarm Optimization Algorithm Based on Simulated Annealing[J]. Computer Engineering and Application, 2004(1): 47-50. [20] 卢新明, 尹红. 矿井通风智能化理论与技术[J]. 煤炭学报, 2020, 45(6): 2236-2247. Lu Xinming, Yin Hong.The Intelligent Theory and Technology of Mine Ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2236-2247. [21] 张利凤, 胡小兵. 求解非线性约束问题的混合粒子群优化算法[J]. 计算机科学, 2011, 38(增1): 178-180, 188. Zhang Lifeng, Hu Xiaobing.Hybrid Particle Swarm Alogrithm of Solving Nonlinear Constraint Optimization Problems[J]. Computer Science, 2011, 38(S1): 178-180, 188. |