[1] |
Yingchun Y, Laibin Z, Wei L, et al.Oil pipeline work conditions clustering based on simulated annealing k-Means algorithm[C]. Computer Science and Information Engineering, 2009 WRI World Congress on. IEEE, 2009, 3: 646-650.
|
[2] |
李春生, 王耀南. 聚类中心初始化的新方法[J]. 控制理论与应用, 2010, 27(10): 1435-1440.Li Chunsheng, Wang Yaonan.A new method for cluster center initialization[J]. Control Theory and Applications, 2010, 27(10): 1435-1440.
|
[3] |
钱线, 黄萱菁, 吴立德. 初始化K-means的谱方法[J]. 自动化学报, 2007, 33(4): 342-346.Qian Xian, Huang Xuanjing, Wu Lide.Initialization of K-means Spectral Method[J]. Acta Automatica Sinica, 2007, 33(4): 342-346.
|
[4] |
于佐军, 秦欢. 基于改进蜂群算法的K-means算法[J]. 控制与决策, 2018, 33(1): 181-185.Yu Zuojun, Qin Huan.K-means algorithm based on improved bee colony algorithm[J]. Control and Decision, 2018, 33(1): 181-185.
|
[5] |
杨广全, 朱昌明, 王向红, 等. 基于粒子群K均值聚类算法的电梯交通模式识别[J]. 控制与决策, 2007, 22(10): 1139-1142.Yang Guangquan, Zhu Changming, Wang Xianghong, et al.Elevator traffic pattern recognition based on particle swarm K-means clustering algorithm[J]. Control and Decision, 2007, 22(10): 1139-1142.
|
[6] |
刘衍民, 隋常玲, 赵庆祯. 基于K-均值聚类的动态多种群粒子群算法及其应用[J]. 控制与决策, 2011, 26(7): 1019-1025.Liu Yanmin, Sui Changling, Zhao Qingzhen.Dynamic multi-population particle swarm optimization algorithm based on K-means clustering and its application[J]. Control and Decision, 2011, 26(7): 1019-1025.
|
[7] |
Eberhart R C, Kennedy J.A new optimizer using particle swarm theory[C]. Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on. IEEE, 1995: 39-43.
|
[8] |
Clerc M, Kennedy J.The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(1): 58-73.
|
[9] |
Ratnaweera A, Halgamuge S K, Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2004, 8(3): 240-255.
|
[10] |
Zeng N Y, Wang Z D, Zhang H, et al.A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay[J]. Cognitive Computation (S1866-9956), 2016, 8(2): 143-152.
|
[11] |
李晓磊. 一种新型的智能优化方法-人工鱼群算法[D]. 杭州: 浙江大学, 2003.Li Xiaolei.A new intelligent optimization method- artificial fish swarm algorithm [D]. Hangzhou: Zhejiang University, 2003.
|
[12] |
匡芳君, 金忠, 徐蔚鸿, 等. Tent混沌人工蜂群与粒子群混合算法[J]. 控制与决策, 2015, 30(5): 839-847.Kuang Fangjun, Jin Zhong, Xu Weihong, et al.Tent chaotic artificial bee colony and particle swarm hybrid algorithm[J]. Control and Decision, 2015, 30(5): 839-847.
|
[13] |
Shi X H, Liang Y C, Lee H P, et al.An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Information Processing Letters (S0020-0190), 2005, 93(5): 255-261.
|
[14] |
胡玉霞, 马留洋, 张锐, 等. 基于遗传蜂群算法的运动想象BCI系统导联选择[J]. 计算机应用研究, 2018, 35(8): 2374-2378.Hu Yuxia, Ma Liuyang, Zhang Rui, et al.Selection of lead in motion imaging BCI system based on genetic colony algorithm[J]. Journal of Computer Applications, 2018, 35(8): 2374-2378.
|
[15] |
Shi Y H, Eberhart R C.Parameter selection in particle swarm optimization[C]. International conference on evolutionary programming. Berlin: Springer, 1998: 591-600.
|
[16] |
Tang Y, Wang Z D, Fang J.Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm[J]. Expert Systems with Applications (S0957-4174), 2011, 38(3): 2523-2535
|
[17] |
Rousseeuw P J.Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics (S0377-0427), 1987, 20: 53-65.
|