系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3099-3111.doi: 10.16182/j.issn1004731x.joss.24-0910

• 论文 • 上一篇    

基于改进YOLOv8的轻量级装配工件检测算法

伍枢珩1,2, 刘永奎1,2, 张霖3, 肖莹莹4,5, 王力翚6   

  1. 1.西安电子科技大学 机电工程学院,陕西 西安 710071
    2.西安电子科技大学 高性能电子装备机电集成制造全国重点实验室,陕西 西安 710071
    3.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    4.北京仿真中心,北京 100854
    5.北京电子工程总体研究所,北京 100854
    6.瑞典皇家理工学院,斯德哥尔摩 25175
  • 收稿日期:2024-08-16 修回日期:2024-10-04 出版日期:2025-12-26 发布日期:2025-12-24
  • 通讯作者: 刘永奎
  • 第一作者简介:伍枢珩(2000-),男,硕士生,研究方向为计算机视觉和智能机器人。
  • 基金资助:
    国家自然科学基金(61973243)

Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8

Wu Shuheng1,2, Liu Yongkui1,2, Zhang Lin3, Xiao Yingying4,5, Wang Lihui6   

  1. 1.School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
    2.State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
    3.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    4.Beijing Simulation Center, Beijing 100854, China
    5.Beijing Institute of Electronic System Engineering, Beijing 100854, China
    6.KTH Royal Institute of Technology, Stockholm 25175, Sweden
  • Received:2024-08-16 Revised:2024-10-04 Online:2025-12-26 Published:2025-12-24
  • Contact: Liu Yongkui

摘要:

针对现有的基于深度学习的目标检测算法在机器人自动装配任务中识别精度低、检测速度慢的问题,提出了一种基于YOLOv8的轻量级装配工件目标检测算法。引入部分卷积PConv对C2f模块进行改进设计新的Faster_C2f模块,提高了模型的检测速度;采用SIoU损失函数来优化CIoU损失函数的位置预测精度并提高小目标的定位准确性;使用HS-FPN(high-level screening-feature fusion pyramid networks)结构改进Neck部分,减少了模型的计算量,提高了检测速度;结合iRMB模块与EMA注意力机制,提出了iEMA机制。实验结果表明:在自制装配工件数据集上,与原始算法相比,改进算法F1分数提高了3.2%,mAP值提高了1.7%,帧率提高了11%,而模型参数量减少了47%,计算复杂度降低了32%。

关键词: YOLOv8, 注意力机制, 轻量化, 机器人自动装配, 目标检测

Abstract:

To address the issues of low recognition accuracy and slow detection speed with existing deep learning-based object detection algorithms for robotic automatic assembly tasks, a lightweight assembly workpiece object detection algorithm based on YOLOv8 was proposed. The PConv was introduced to improve the C2f module, anda new Faster_C2f module was designed to enhance the detection speed of the model. The SIoU loss function was employed to optimize the location prediction accuracy of the CIoU loss function and improve the localization accuracy of small targets. The high-level screening-feature fusion pyramid networks (HS-FPN) structure was used to improve the Neck part, which significantly reduced the model's computational load and increased the detection speed. By combining the iRMB module with the EMA attention mechanism, an iEMA mechanism was proposed. Experimental results have indicated that on the self-made assembly workpiece dataset, the improved algorithm increases the F1 score by 3.2%, the mAP value by 1.7%, and the FPS by 11%, while reducing the model's parameter count by 47% and the computational complexity by 32% compared with the original algorithm.

Key words: YOLOv8, attention mechanism, light weight, robotic automatic assembly, object detection

中图分类号: