[1] |
吴一全, 刘莉. 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40(12): 92-109.
|
|
Wu Yiquan, Liu Li. Research and Development of the Vision-based Lane Detection Methods[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 92-109.
|
[2] |
Pan Xingang, Shi Jianping, Luo Ping, et al. Spatial as Deep: Spatial CNN for Traffic Scene Understanding[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and the Thirtieth Innovative Applications of Artificial Intelligence Conference and the Eighth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 7277-7283.
|
[3] |
Zheng Tu, Fang Hao, Zhang Yi, et al. RESA: Recurrent Feature-shift Aggregator for Lane Detection[C]//Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence and the Thirty-Third Conference on Innovative Applications of Artificial Intelligence and the Eleventh Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3547-3554.
|
[4] |
方遒, 李伟林, 梁卓凡, 等. 基于多尺度复合卷积和图像分割融合的车道线检测算法[J]. 北京理工大学学报, 2023, 43(8): 792-802.
|
|
Fang Qiu, Li Weilin, Liang Zhuofan, et al. Lane Line Detection Algorithm Based on Multi-scale Composite Convolution and Image Segmentation Fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43(8): 792-802.
|
[5] |
Han Jianhua, Deng Xiajun, Cai Xinyue, et al. Laneformer: Object-aware Row-column Transformers for Lane Detection[C]//Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence and Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence and the Twelveth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2022: 799-807.
|
[6] |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[7] |
Qin Zequn, Wang Huanyu, Li Xi. Ultra Fast Structure-aware Deep Lane Detection[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 276-291.
|
[8] |
Li Xiang, Li Jun, Hu Xiaolin, et al. Line-CNN: End-to-end Traffic Line Detection with Line Proposal Unit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 248-258.
|
[9] |
Tabelini Lucas, Berriel Rodrigo, Paixão Thiago M, et al. Keep Your Eyes on the Lane: Real-time Attention-guided Lane Detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 294-302.
|
[10] |
Ko Yeongmin, Lee Younkwan, Azam Shoaib, et al. Key Points Estimation and Point Instance Segmentation Approach for Lane Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8949-8958.
|
[11] |
Chen Liang, Zhang Jiawei, Li Zhenhua, et al. Deep Richardson-lucy Deconvolution for Low-light Image Deblurring[J]. International Journal of Computer Vision, 2024, 132(2): 428-445.
|
[12] |
Ma Long, Ma Tengyu, Liu Risheng, et al. Toward Fast, Flexible, and Robust Low-light Image Enhancement[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 5627-5636.
|
[13] |
Yin Xiangchen, Yu Zhenda, Fei Zetao, et al. PE-YOLO: Pyramid Enhancement Network for Dark Object Detection[C]//Artificial Neural Networks and Machine Learning-ICANN 2023. Cham: Springer Nature Switzerland, 2023: 163-174.
|
[14] |
刘岩, 仇甜甜, 肖艳秋, 等. 融合改进GAN网络的夜视环境车道线检测[J]. 计算机工程与应用, 2023, 59(15): 214-222.
|
|
Liu Yan, Qiu Tiantian, Xiao Yanqiu, et al. Lane Detection Algorithm Based on Introduction of Improved GAN Network in Night Vision Environment[J]. Computer Engineering and Applications, 2023, 59(15): 214-222.
|
[15] |
Zhao Wenbo, Tian Wei, Han Yi, et al. Low-illumination Lane Detection by Fusion of Multi-light Information[C]//2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). Piscataway: IEEE, 2022: 1-6.
|
[16] |
Lin T Y, Dollár Piotr, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 936-944.
|
[17] |
Tian Zhi, Shen Chunhua, Chen Hao. Conditional Convolutions for Instance Segmentation[C]//Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 282-298.
|
[18] |
Wang Xinlong, Zhang Rufeng, Kong Tao, et al. Solov2: Dynamic and Fast Instance Segmentation[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17721-17732.
|
[19] |
Li Shoubiao, Wu Xin, Wu Zhifei. Efficient Multi-lane Detection Based on Large-kernel Convolution and Location[J]. IEEE Access, 2023, 11: 58125-58135.
|
[20] |
张稀柳, 张晓玲, 何敏军. 基于改进YOLOX-s的车辆检测方法研究[J]. 系统仿真学报, 2024, 36(2): 487-496.
|
|
Zhang Xiliu, Zhang Xiaoling, He Minjun. Research on Vehicle Detection Method Based on Improved YOLOX-s[J]. Journal of System Simulation, 2024, 36(2): 487-496.
|
[21] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778.
|