系统仿真学报 ›› 2025, Vol. 37 ›› Issue (9): 2188-2199.doi: 10.16182/j.issn1004731x.joss.24-0452

• 论文 • 上一篇    

基于实例关联的暗光下车道线检测

姜彦吉1,4, 张颖阳1,4, 董浩2,4, 张晓光3, 王美惠1   

  1. 1.辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
    2.清华大学 苏州汽车研究院,江苏 苏州 215100
    3.中国第一汽车股份有限公司 工程技术部,吉林 长春 130013
    4.优策(江苏)安全科技有限公司OpenSafe实验室,江苏 苏州 215100
  • 收稿日期:2024-04-26 修回日期:2024-06-17 出版日期:2025-09-18 发布日期:2025-09-22
  • 通讯作者: 董浩
  • 第一作者简介:姜彦吉(1985-),男,副教授,博士,研究方向为预期功能安全和自动驾驶视觉感知。
  • 基金资助:
    辽宁省教育厅面上项目(LJKZ0338);葫芦岛市科技计划项目(2023JH(1)4/02b);广东省科技创新战略专项市县科技创新支撑项目(STKJ2023071)

Lane Detection in Dark Light Based on Instance Association

Jiang Yanji1,4, Zhang Yingyang1,4, Dong Hao2,4, Zhang Xiaoguang3, Wang Meihui1   

  1. 1.College of Software, Liaoning Technical University, Huludao 125105, China
    2.Suzhou Automotive Research Institute, Tsinghua University, Suzhou 215100, China
    3.Engineering Technology Department, China FAW Group Co. , Ltd. , Changchun 130013, China
    4.OpenSafe Lab, Utcer(Jiangsu) Safety Technology Co. , Ltd, Suzhou 215100, China
  • Received:2024-04-26 Revised:2024-06-17 Online:2025-09-18 Published:2025-09-22
  • Contact: Dong Hao

摘要:

在车道线检测研究中,现有算法能够高效地检测在良好光照条件下的车道线,但在暗光下进行车道线检测仍然面临较高的漏检率挑战。针对此问题,利用车道线间的结构关系,提出了一种有助于暗光条件下的检测算法——实例关联网络(instance association net, IANet)。利用车道线起点处的特征以及全局特征图为不同的车道线生成独特的掩膜,将掩膜作用于特征图以实现车道线的实例级特征分离;基于实例级注意力机制来关联分离后的特征,该机制能够在实例之间进行有效的信息交互,同时在关联之前引入绝对位置编码,增强模型对车道线位置关联性的关注;通过定位车道线上的关键点和计算偏移量来实现车道线的精确检测。IANet在CULane数据集上与现有方法进行了实验对比,总体评分以及夜间场景下的评分分别为75.7%和71.9%,相比于其他算法明显提高,在多种受光照影响的环境下展现出了良好的鲁棒性,所提出的实例特征关联显著降低了暗光下车道线检测的漏检率。

关键词: 自动驾驶, 暗光车道线检测, 实例关联, 位置编码, 注意力机制

Abstract:

In current research on lane detection, existing algorithms can efficiently detect lane lines under good lighting conditions. However, lane detection in low light still faces the challenge of a high false negative rate. A detection algorithm called Instance Association Net(IANet) is proposed to address this issue by utilizing the structural relationships between lane lines, which is helpful for low light conditions. The algorithm first generates unique masks for different lane lines using features at the starting points of the lane lines and a global feature map, achieving instance-level feature separation of the lane lines. It employs an instance-level attention mechanism to correlate the separated features, facilitating effective information exchange between instances. Before the correlation, absolute position encoding is introduced to enhance the model's focus on the positional correlation of the lane lines. The network achieves precise lane detection by locating key points on the lane lines and calculating the offset. Experimental comparisons with existing methods on the CULane dataset show that IANet achieves an overall score of 75.7% and a score of 71.9% in night scenes, which is higher than other algorithms. It demonstrates good robustness in various lighting conditions and significantly reduces the false negative rate of lane detection in low-light conditions due to the proposed instance feature association.

Key words: autonomous driving, dark lane detection, instance association, position encoding, attention mechanism

中图分类号: