系统仿真学报 ›› 2025, Vol. 37 ›› Issue (2): 474-486.doi: 10.16182/j.issn1004731x.joss.23-1164
• 研究论文 • 上一篇
李想, 任晓羽, 周永兵, 张剑
收稿日期:
2023-09-19
修回日期:
2023-11-08
出版日期:
2025-02-14
发布日期:
2025-02-10
通讯作者:
张剑
第一作者简介:
李想(1998-),男,硕士生,研究方向为智能调度与决策。
基金资助:
Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian
Received:
2023-09-19
Revised:
2023-11-08
Online:
2025-02-14
Published:
2025-02-10
Contact:
Zhang Jian
摘要:
针对离散制造车间的工时不确定性问题,在考虑设备和工序约束的基础上,以最小化最大完工时间为优化目标构建综合调度数学模型,并提出一种改进双竞争深度Q网络算法(ID3QN)求解随机工时下的柔性综合调度问题。从工序、机器及整体层面分别设计了三组状态特征;将与工时、加工顺序相关的工序规则以及与优化目标相关的机器规则组成的8组复合调度规则作为动作集,并根据平均机器利用率差值进行即时奖励;引入自注意力机制与混合采样策略,以进一步提升算法稳定性和泛化性。仿真结果表明:所提算法在求解随机工时柔性综合调度问题时,平均偏差比现有深度强化学习算法平均提高了54.63%,验证了算法的有效性。
中图分类号:
李想,任晓羽,周永兵等 . 基于改进D3QN算法的随机工时下柔性综合调度问题研究[J]. 系统仿真学报, 2025, 37(2): 474-486.
Li Xiang,Ren Xiaoyu,Zhou Yongbing,et al . Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm[J]. Journal of System Simulation, 2025, 37(2): 474-486.
表5
确定性工时下的期望完工时间
算法 | MK01 | MK02 | MK03 | MK04 | MK05 | MK06 | MK07 | MK08 | MK09 | MK10 | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
PR1 | 105 | 69 | 350 | 189 | 335 | 148 | 305 | 748 | 788 | 603 | 364.0 |
PR2 | 175 | 157 | 757 | 193 | 410 | 258 | 537 | 977 | 1 249 | 1 133 | 584.6 |
PR3 | 92 | 80 | 361 | 189 | 245 | 156 | 313 | 680 | 473 | 582 | 317.1 |
PR4 | 154 | 122 | 610 | 140 | 278 | 200 | 391 | 714 | 798 | 970 | 437.7 |
PR5 | 100 | 88 | 398 | 218 | 396 | 178 | 426 | 1 153 | 998 | 735 | 469.0 |
PR6 | 183 | 184 | 1 142 | 243 | 441 | 378 | 714 | 1 401 | 1 440 | 1 526 | 765.2 |
PR7 | 101 | 84 | 456 | 213 | 414 | 196 | 365 | 1 296 | 1 136 | 888 | 514.9 |
PR8 | 200 | 162 | 1 019 | 309 | 475 | 414 | 788 | 1 509 | 1 537 | 1 532 | 794.5 |
AC | 80 | 63 | 342 | 139 | 246 | 179 | 312 | 616 | 439 | 565 | 298.1 |
DQN | 75 | 50 | 270 | 118 | 229 | 96 | 243 | 652 | 534 | 634 | 290.1 |
DDQN | 73 | 44 | 292 | 119 | 218 | 97 | 249 | 651 | 464 | 444 | 265.1 |
D3QN | 76 | 46 | 333 | 114 | 220 | 98 | 219 | 719 | 390 | 410 | 262.5 |
IGA | 57 | 42 | 262 | 108 | 202 | 82 | 201 | 587 | 363 | 316 | 222.0 |
IMFFA | 54 | 41 | 279 | 108 | 196 | 82 | 203 | 583 | 368 | 311 | 222.5 |
ID3QN | 74 | 47 | 296 | 111 | 216 | 89 | 221 | 606 | 425 | 390 | 247.5 |
表6
确定性工时下算法运行时间 (s)
算法 | MK01 | MK02 | MK03 | MK04 | MK05 | MK06 | MK07 | MK08 | MK09 | MK10 | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
PR1 | 0.032 | 0.033 | 0.025 | 0.033 | 0.026 | 0.032 | 0.026 | 0.027 | 0.026 | 0.031 | 0.029 |
PR2 | 0.033 | 0.027 | 0.027 | 0.025 | 0.026 | 0.025 | 0.029 | 0.025 | 0.030 | 0.029 | 0.028 |
PR3 | 0.026 | 0.025 | 0.024 | 0.024 | 0.024 | 0.033 | 0.024 | 0.029 | 0.025 | 0.024 | 0.027 |
PR4 | 0.029 | 0.024 | 0.027 | 0.027 | 0.029 | 0.035 | 0.024 | 0.025 | 0.030 | 0.024 | 0.027 |
PR5 | 0.029 | 0.024 | 0.027 | 0.027 | 0.029 | 0.035 | 0.024 | 0.025 | 0.030 | 0.024 | 0.027 |
PR6 | 0.029 | 0.024 | 0.027 | 0.027 | 0.029 | 0.035 | 0.024 | 0.025 | 0.030 | 0.024 | 0.027 |
PR7 | 0.029 | 0.024 | 0.027 | 0.027 | 0.029 | 0.035 | 0.024 | 0.025 | 0.030 | 0.024 | 0.027 |
PR8 | 0.025 | 0.026 | 0.027 | 0.027 | 0.026 | 0.027 | 0.038 | 0.033 | 0.030 | 0.026 | 0.028 |
AC | 1.843 | 0.064 | 0.381 | 0.139 | 0.213 | 0.402 | 0.160 | 1.198 | 1.327 | 1.353 | 0.708 |
DQN | 1.794 | 0.071 | 0.429 | 0.150 | 0.195 | 0.412 | 0.179 | 1.172 | 1.389 | 1.397 | 0.719 |
DDQN | 1.001 | 0.109 | 0.562 | 0.203 | 0.385 | 0.693 | 0.358 | 1.694 | 1.892 | 2.003 | 0.890 |
D3QN | 1.976 | 0.134 | 0.541 | 0.207 | 0.283 | 0.543 | 0.236 | 1.363 | 1.714 | 1.900 | 0.890 |
IGA | 8.358 | 9.413 | 28.492 | 14.316 | 15.151 | 26.888 | 10.132 | 50.630 | 56.899 | 52.328 | 27.261 |
IMFFA | 5.716 | 6.520 | 26.304 | 11.511 | 15.064 | 26.865 | 13.975 | 54.626 | 58.324 | 56.907 | 27.581 |
ID3QN | 0.978 | 0.106 | 0.544 | 0.215 | 0.255 | 0.506 | 0.244 | 1.353 | 1.506 | 1.614 | 0.732 |
表7
不同方差下的随机工时期望偏差
算例 | 分布 | PR1 | PR2 | PR3 | PR4 | PR5 | PR6 | PR7 | AC | DQN | DDQN | D3QN | IGA | IMFFA | ID3QN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MK01 | U1 | 0.96 | 2.42 | 1.26 | 1.84 | 1.11 | 2.87 | 1.02 | 0.63 | 0.96 | 0.75 | 0.33 | 0.20 | 0.25 | 0.35 |
U2 | 1.97 | 4.44 | 2.64 | 3.65 | 2.39 | 5.05 | 2.10 | 1.35 | 1.75 | 1.68 | 0.72 | 0.86 | 0.96 | 0.69 | |
B1 | 0.53 | 1.77 | 0.71 | 1.30 | 0.62 | 1.89 | 0.57 | 0.14 | 0.49 | 0.29 | 0.11 | 0.20 | 0.24 | 0.53 | |
B2 | 0.36 | 1.87 | 0.75 | 1.32 | 0.51 | 2.26 | 0.48 | 0.14 | 0.64 | 0.19 | 0.15 | 0.12 | 0.06 | 0.44 | |
E | 1.34 | 2.61 | 1.36 | 1.93 | 1.57 | 3.28 | 1.45 | 0.72 | 1.22 | 0.86 | 0.50 | 0.38 | 0.29 | 0.48 | |
MK02 | U1 | 0.86 | 4.19 | 1.54 | 2.50 | 1.25 | 5.07 | 1.29 | 1.58 | 1.26 | 0.82 | 0.22 | 0.14 | 0.24 | 0.25 |
U2 | 1.95 | 7.40 | 2.78 | 4.48 | 2.98 | 8.16 | 2.98 | 3.08 | 2.51 | 2.31 | 0.64 | 0.90 | 1.03 | 0.64 | |
B1 | 0.49 | 2.99 | 0.74 | 1.59 | 0.90 | 3.38 | 0.99 | 1.02 | 0.81 | 0.62 | 0.53 | 0.38 | 0.32 | 0.55 | |
B2 | 0.39 | 3.69 | 1.11 | 1.98 | 0.72 | 4.16 | 0.76 | 1.32 | 1.24 | 1.10 | 0.46 | 0.30 | 0.33 | 0.47 | |
E | 1.45 | 5.03 | 1.90 | 2.92 | 1.94 | 5.84 | 1.89 | 1.96 | 2.27 | 1.45 | 0.68 | 0.45 | 0.57 | 0.54 | |
MK03 | U1 | 0.99 | 3.49 | 0.93 | 2.34 | 0.93 | 4.58 | 1.14 | 0.82 | 0.62 | 0.78 | 0.37 | 0.26 | 0.31 | 0.37 |
U2 | 1.90 | 5.60 | 1.85 | 3.96 | 1.78 | 7.34 | 2.12 | 1.61 | 1.33 | 1.58 | 0.78 | 0.84 | 0.89 | 0.70 | |
B1 | 0.45 | 2.36 | 0.44 | 1.36 | 0.48 | 3.24 | 0.57 | 0.31 | 0.09 | 0.13 | 0.04 | 0.09 | 0.04 | 0.02 | |
B2 | 0.27 | 2.98 | 0.68 | 1.80 | 0.37 | 3.79 | 0.47 | 0.60 | 0.62 | 0.90 | 0.05 | 0.11 | 0.09 | 0.03 | |
E | 0.95 | 2.70 | 0.70 | 1.70 | 0.95 | 4.02 | 1.05 | 0.57 | 0.42 | 0.66 | 0.09 | 0.12 | 0.14 | 0.08 | |
MK04 | U1 | 0.77 | 1.59 | 0.56 | 0.86 | 0.83 | 1.89 | 1.04 | 0.81 | 0.84 | 0.58 | 0.04 | 0.05 | 0.03 | 0.07 |
U2 | 1.52 | 2.94 | 1.41 | 1.90 | 1.86 | 3.73 | 2.19 | 2.08 | 1.93 | 1.46 | 0.41 | 0.46 | 0.53 | 0.40 | |
B1 | 0.47 | 0.94 | 0.18 | 0.40 | 0.53 | 1.15 | 0.66 | 0.39 | 0.33 | 0.16 | 0.27 | 0.23 | 0.20 | 0.22 | |
B2 | 0.27 | 1.25 | 0.29 | 0.59 | 0.33 | 1.47 | 0.46 | 0.59 | 0.46 | 0.48 | 0.21 | 0.26 | 0.20 | 0.20 | |
E | 1.00 | 1.76 | 0.58 | 0.83 | 1.24 | 1.90 | 1.46 | 0.86 | 0.83 | 0.92 | 0.16 | 0.10 | 0.07 | 0.11 | |
MK05 | U1 | 1.37 | 1.83 | 0.71 | 0.91 | 1.41 | 2.13 | 1.58 | 0.94 | 0.74 | 0.93 | 0.40 | 0.31 | 0.34 | 0.38 |
U2 | 2.50 | 3.54 | 1.72 | 1.93 | 2.74 | 3.94 | 3.13 | 1.89 | 1.79 | 2.02 | 0.77 | 1.00 | 1.03 | 0.81 | |
B1 | 0.82 | 1.15 | 0.36 | 0.42 | 0.89 | 1.38 | 1.08 | 0.45 | 0.29 | 0.46 | 0.60 | 0.50 | 0.53 | 0.60 | |
B2 | 0.61 | 1.57 | 0.44 | 0.68 | 0.72 | 1.75 | 0.89 | 0.47 | 0.40 | 0.54 | 0.05 | 0.05 | 0.02 | 0.51 | |
E | 1.43 | 1.93 | 0.72 | 0.81 | 1.54 | 1.97 | 1.73 | 0.91 | 0.82 | 0.93 | 0.59 | 0.31 | 0.35 | 0.25 | |
MK06 | U1 | 1.18 | 5.44 | 1.76 | 3.44 | 1.32 | 6.23 | 1.45 | 3.31 | 3.07 | 2.62 | 0.38 | 0.12 | 0.21 | 0.37 |
U2 | 2.77 | 8.96 | 3.33 | 5.74 | 3.04 | 9.18 | 3.48 | 5.54 | 5.17 | 4.76 | 1.01 | 0.86 | 0.95 | 0.83 | |
B1 | 0.82 | 3.57 | 1.11 | 2.31 | 1.01 | 4.25 | 1.18 | 2.06 | 1.93 | 1.61 | 0.08 | 0.08 | 0.02 | 0.63 | |
B2 | 0.48 | 4.65 | 1.29 | 3.09 | 0.71 | 5.44 | 0.78 | 2.84 | 2.35 | 2.13 | 0.66 | 0.46 | 0.49 | 0.08 | |
E | 2.04 | 4.88 | 1.76 | 2.99 | 2.41 | 5.68 | 2.66 | 2.74 | 2.35 | 2.54 | 0.36 | 0.46 | 0.49 | 0.36 | |
MK07 | U1 | 1.15 | 3.69 | 0.98 | 2.00 | 1.42 | 4.09 | 1.27 | 1.42 | 0.92 | 0.84 | 0.38 | 0.21 | 0.27 | 0.36 |
U2 | 2.14 | 5.96 | 1.89 | 3.24 | 2.83 | 6.19 | 2.48 | 2.27 | 1.67 | 1.50 | 0.78 | 0.77 | 0.89 | 0.77 | |
B1 | 0.69 | 2.33 | 0.41 | 1.04 | 1.06 | 2.57 | 0.81 | 0.67 | 0.32 | 0.33 | 0.56 | 0.09 | 0.05 | 0.01 | |
B2 | 0.37 | 2.87 | 0.68 | 1.51 | 0.63 | 3.33 | 0.53 | 1.02 | 0.56 | 1.08 | 0.45 | 0.18 | 0.13 | 0.05 | |
E | 1.12 | 2.49 | 0.71 | 1.27 | 1.58 | 2.89 | 1.36 | 0.89 | 0.64 | 0.57 | 0.44 | 0.16 | 0.21 | 0.14 | |
MK08 | U1 | 1.04 | 1.84 | 0.57 | 0.71 | 1.65 | 2.45 | 2.00 | 0.60 | 0.79 | 1.02 | 0.38 | 0.30 | 0.32 | 0.37 |
U2 | 2.03 | 3.36 | 1.31 | 1.55 | 2.97 | 4.09 | 3.40 | 1.40 | 1.66 | 1.88 | 0.73 | 0.93 | 0.95 | 0.65 | |
B1 | 0.63 | 1.06 | 0.15 | 0.24 | 0.98 | 1.42 | 1.20 | 0.16 | 0.31 | 0.35 | 0.58 | 0.03 | 0.03 | 0.01 | |
B2 | 0.53 | 1.10 | 0.14 | 0.28 | 0.91 | 1.55 | 1.14 | 0.22 | 0.39 | 0.48 | 0.50 | 0.04 | 0.03 | 0.01 | |
E | 0.86 | 1.24 | 0.35 | 0.41 | 1.30 | 1.78 | 1.62 | 0.34 | 0.45 | 0.56 | 0.36 | 0.20 | 0.12 | 0.10 | |
MK09 | U1 | 1.87 | 3.78 | 1.15 | 2.03 | 2.31 | 4.76 | 3.03 | 0.67 | 1.11 | 1.32 | 0.53 | 0.33 | 0.32 | 0.55 |
U2 | 3.31 | 6.11 | 2.00 | 3.24 | 4.00 | 7.11 | 4.96 | 1.52 | 2.27 | 2.30 | 0.97 | 1.01 | 1.04 | 1.22 | |
B1 | 1.16 | 2.53 | 0.56 | 1.19 | 1.56 | 3.00 | 2.12 | 0.30 | 0.62 | 0.56 | 0.70 | 0.11 | 0.12 | 0.14 | |
B2 | 0.96 | 2.55 | 0.60 | 1.11 | 1.33 | 3.46 | 1.60 | 0.23 | 0.85 | 0.75 | 0.17 | 0.08 | 0.06 | 0.02 | |
E | 1.76 | 2.88 | 0.83 | 1.44 | 2.12 | 3.47 | 2.81 | 0.58 | 0.81 | 0.86 | 0.29 | 0.19 | 0.17 | 0.46 | |
MK10 | U1 | 1.63 | 4.11 | 1.23 | 2.16 | 1.89 | 5.22 | 2.19 | 1.42 | 1.84 | 1.37 | 0.45 | 0.21 | 0.24 | 0.48 |
U2 | 2.68 | 6.36 | 2.18 | 3.59 | 3.32 | 8.17 | 3.71 | 2.41 | 3.43 | 2.58 | 0.90 | 0.81 | 0.86 | 1.31 | |
B1 | 1.11 | 2.72 | 0.75 | 1.46 | 1.30 | 3.64 | 1.59 | 0.74 | 1.24 | 0.62 | 0.62 | 0.17 | 0.15 | 0.21 | |
B2 | 0.66 | 3.21 | 0.66 | 1.48 | 0.84 | 3.87 | 1.03 | 0.92 | 1.31 | 1.32 | 0.13 | 0.16 | 0.14 | 0.06 | |
E | 1.58 | 2.99 | 0.99 | 1.81 | 1.78 | 4.05 | 2.10 | 1.06 | 1.44 | 0.86 | 0.47 | 0.15 | 0.13 | 0.26 |
1 | 尚旭东. 存在相同多功能设备的综合调度算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
Shang Xudong. Research on Integrated Scheduling Algorithm with the Same Multi-functional Machine[D]. Harbin: Harbin University of Science and Technology, 2022. | |
2 | 谢志强, 王茜. 基于逆序层优先的柔性综合调度算法[J]. 电子与信息学报, 2022, 44(5): 1554-1562. |
Xie Zhiqiang, Wang Qian. Flexible Integrated Scheduling Algorithm Based on Reverse Order Layer Priority[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1554-1562. | |
3 | 谢志强, 周伟, 杨静. 考虑层级调度次序的资源协同综合调度算法[J]. 计算机集成制造系统, 2022, 28(11): 3391-3402. |
Xie Zhiqiang, Zhou Wei, Yang Jing. Resource Cooperative Integrated Scheduling Algorithm Considering Hierarchical Scheduling Order[J]. Computer Integrated Manufacturing Systems, 2022, 28(11): 3391-3402. | |
4 | 谢志强, 张晓欢, 辛宇, 等. 考虑后续工序的择时综合调度算法[J]. 自动化学报, 2018, 44(2): 344-362. |
Xie Zhiqiang, Zhang Xiaohuan, Xin Yu, et al. Time-selective Integrated Scheduling Algorithm Considering Posterior Processes[J]. Acta Automatica Sinica, 2018, 44(2): 344-362. | |
5 | Zhang Cong, Song Wen, Cao Zhiguang, et al. Learning to Dispatch for Job Shop Scheduling Via Deep Reinforcement Learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1621-1632. |
6 | 邵炜世. 基于元启发式的分布式车间调度方法研究[D]. 南京: 南京航空航天大学, 2018. |
Shao Weishi. Research on Meta-heuristic Methods for Distributed Shop Scheduling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
7 | 石飞, 赵诗奎. 基于工序约束链编码的遗传算法求解产品综合调度问题[J]. 中国机械工程, 2017, 28(20): 2483-2492. |
Shi Fei, Zhao Shikui. Product Comprehensive Scheduling Problems Solved by Genetic Algorithm Based on Operation Constraint Chain Coding[J]. China Mechanical Engineering, 2017, 28(20): 2483-2492. | |
8 | 张剑, 袁铭辉, 陈浩杰, 等. 基于改进烟花算法的焊接综合调度研究[J]. 华中科技大学学报(自然科学版), 2022, 50(5): 130-137. |
Zhang Jian, Yuan Minghui, Chen Haojie, et al. Research on Welding Integrated Scheduling Based on Improved Fireworks Algorithm[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2022, 50(5): 130-137. | |
9 | 赵诗奎, 韩青, 王桂从. 基于虚拟零部件级别分区编码的产品综合调度算法[J]. 计算机集成制造系统, 2015, 21(9): 2435-2445. |
Zhao Shikui, Han Qing, Wang Guicong. Product Comprehensive Scheduling Algorithm Based on Virtual Component Level Division Coding[J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2435-2445. | |
10 | 陈浩杰. 面向随机工时资源受限项目调度的遗传规划算法研究[D]. 成都: 西南交通大学, 2022. |
Chen Haojie. Research on Genetic Programming for Resource Constrained Project Scheduling with Stochastic Activity Duration[D]. Chengdu: Southwest Jiaotong University, 2022. | |
11 | Zhan Ming, Lu Yang, Hu Youxi, et al. Dynamic Scheduling Method for Job-shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization[J]. Sustainability, 2022, 14(9): 5177. |
12 | Song Wen, Chen Xinyang, Li Qiang, et al. Flexible Job-shop Scheduling via Graph Neural Network and Deep Reinforcement Learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1600-1610. |
13 | Nour El Houda Hammami, Lardeux Benoit, Hadj-Alouane Atidel B, et al. Job Shop Scheduling: A Novel DRL Approach for Continuous Schedule-generation Facing Real-time Job Arrivals[J]. IFAC-PapersOnLine, 2022, 55(10): 2493-2498. |
14 | Han B A, Yang J J. A Deep Reinforcement Learning Based Solution for Flexible Job Shop Scheduling Problem[J]. International Journal of Simulation Modelling, 2021, 20(2): 375-386. |
15 | 蒋静静. 基于深度强化学习的离散型制造企业车间动态调度研究[D]. 西安: 西安理工大学, 2020. |
Jiang Jingjing. Research on Jobshop Dynamic Scheduling of Discrete Manufacturig Enterprises Based on Deep Reinforcement Learning[D]. Xi'an: Xi'an University of Technology, 2020. | |
16 | 张希肴. 基于深度强化学习的置换流水车间调度方法研究[D]. 武汉: 华中科技大学, 2021. |
Zhang Xiyao. Research on Permutation Flow Shop Scheduling Approaches Based on Deep Reinforcement Learning[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
17 | Luo Shu. Dynamic Scheduling for Flexible Job Shop with New Job Insertions by Deep Reinforcement Learning[J]. Applied Soft Computing, 2020, 91: 106208. |
18 | Yan Qi, Wang Hongfeng, Wu Fang. Digital Twin-enabled Dynamic Scheduling with Preventive Maintenance Using a Double-layer Q-learning Algorithm[J]. Computers & Operations Research, 2022, 144: 105823. |
19 | Chang Xiao, Jia Xiaoliang, Fu Shifeng, et al. Digital Twin and Deep Reinforcement Learning Enabled Real-time Scheduling for Complex Product Flexible Shop-floor[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237(8): 1254-1268. |
20 | Liu Renke, Piplani Rajesh, Toro Carlos. Deep Reinforcement Learning for Dynamic Scheduling of a Flexible Job Shop[J]. International Journal of Production Research, 2022, 60(13): 4049-4069. |
21 | Johnson Dazzle, Chen Gang, Lu Yuqian. Multi-agent Reinforcement Learning for Real-time Dynamic Production Scheduling in a Robot Assembly Cell[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7684-7691. |
22 | Wang Hao, Cheng Junfu, Liu Chang, et al. Multi-objective Reinforcement Learning Framework for Dynamic Flexible Job Shop Scheduling Problem with Uncertain Events[J]. Applied Soft Computing, 2022, 131: 109717. |
23 | Zhang Zhicong, Zheng Li, Li Na, et al. Minimizing Mean Weighted Tardiness in Unrelated Parallel Machine Scheduling with Reinforcement Learning[J]. Computers & Operations Research, 2012, 39(7): 1315-1324. |
24 | 柳旭东, 赵夙, 朱晓荣. 基于强化学习的自适应网络覆盖优化算法研究[J]. 光通信研究, 2022(5): 66-73. |
Liu Xudong, Zhao Su, Zhu Xiaorong. An Adaptive Network Coverage Optimization Method Based on Reinforcement Learning[J]. Study on Optical Communications, 2022(5): 66-73. | |
25 | Han Baoan, Yang Jianjun. Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN[J]. IEEE Access, 2020, 8: 186474-186495. |
26 | 张铃, 张钹. 神经网络中BP算法的分析[J]. 模式识别与人工智能, 1994, 7(3): 191-195. |
Zhang Ling, Zhang Bo. On the BP Algorithm of Feedforward Neural Networks[J]. Pattern Recognition and Artificial Intelligence, 1994, 7(3): 191-195. | |
27 | 高御尧, 石明全, 秦渝, 等. 基于改进非全连接神经网络的站点客流预测模型[J]. 计算机工程, 2023, 49(9): 43-51. |
Gao Yuyao, Shi Mingquan, Qin Yu, et al. Station Ridership Prediction Model Based on Improved Non-fully Connected Neural Network[J]. Computer Engineering, 2023, 49(9): 43-51. | |
28 | Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
29 | 王冬雪, 闻翔, 孙慧妮, 等. 基于密集连接注意力一维卷积的航班延误预测[J]. 北京交通大学学报, 2023, 47(2): 95-105. |
Wang Dongxue, Wen Xiang, Sun Huini, et al. Flight Delay Prediction Based on Densely Connected Attention One-dimensional Convolution[J]. Journal of Beijing Jiaotong University, 2023, 47(2): 95-105. | |
30 | 吴浩, 陈运涛, 朱赵辉, 等. 改进一维卷积神经网络的隧道围岩收敛变形分级预测[J]. 应用基础与工程科学学报, 2024, 32(1): 145-159. |
Wu Hao, Chen Yuntao, Zhu Zhaohui, et al. Prediction of Tunnel Squeezing Classification Based on Improved One-dimensional Convolutional Neural Network[J]. Journal of Basic Science and Engineering, 2024, 32(1): 145-159. | |
31 | Fortunato M, Azar M G, Piot B, et al. Noisy Networks For Exploration[C]//ICLR 2018. New York: ICLR, 2018: 1-21. |
32 | 杨兴锐, 赵寿为, 张如学, 等. 结合自注意力和残差的BiLSTM_CNN文本分类模型[J]. 计算机工程与应用, 2022, 58(3): 172-180. |
Yang Xingrui, Zhao Shouwei, Zhang Ruxue, et al. BiLSTM_CNN Classification Model Based on Self-attention and Residual Network[J]. Computer Engineering and Applications, 2022, 58(3): 172-180. | |
33 | 閤泰梓, 唐秋华, 成丽新. 基于DQN协同进化算法的柔性作业车间能效调度优化[J/OL]. 计算机集成制造系统. (2023-02-27) [2023-09-23]. . |
Ge Taizi, Tang Qiuhua, Cheng Lixin. Energy-efficient Optimization of Flexible Job-shop Scheduling Based on DQN Co-evolutionary Algorithm[J/OL]. Computer Integrated Manufacturing Systems. (2023-02-27) [2023-09-23]. . |
[1] | 徐忠锴, 刘艳玲, 盛晓娟, 汪超, 柯文俊. 基于改进YOLOv5的变电站典型缺陷自动检测算法[J]. 系统仿真学报, 2024, 36(11): 2604-2615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||