系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2103-2114.doi: 10.16182/j.issn1004731x.joss.24-0320

• 论文 • 上一篇    

基于YOLOv8-DF的轻量化驾驶员面部目标检测算法

李明煜, 林家泉   

  1. 中国民航大学 电子信息与自动化学院,天津 300300
  • 收稿日期:2024-04-01 修回日期:2024-05-06 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 林家泉
  • 第一作者简介:李明煜(1998-),男,硕士生,研究方向为计算机视觉、目标检测。
  • 基金资助:
    国家重点研发计划(2022YFB4300904)

Lightweight Driver Face Object Detection Algorithm Based on YOLOv8-DF

Li Mingyu, Lin Jiaquan   

  1. School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
  • Received:2024-04-01 Revised:2024-05-06 Online:2025-08-20 Published:2025-08-26
  • Contact: Lin Jiaquan

摘要:

针对驾驶环境下YOLOv8n检测算法存在计算量、参数量较大的问题,提出一种结构轻量化的驾驶员面部目标检测算法YOLOv8-DF。提出一种轻量级多尺度卷积模块LMCM(lightweight multi-scale convolution module)替换网络中的Conv模块,双通道设计可以降低算法的计算量和参数量,多尺度设计可以丰富网络内部的特征信息;引入轻量级卷积GhostConv、Fasterblock模块与C2f模块融合提出一种双通道轻量级卷积模块DLCM(dual-channel lightweight convolution module)与SPPF模块融合。实验结果表明:YOLOv8n-DF算法在测试集的平均精确率达到了99.2%,相较YOLOv8n检测算法参数量下降了36.7%,计算量下降了30.9%,帧率达到了282 帧/s。

关键词: 驾驶员面部检测, 轻量级卷积, 多尺度特征融合, 实时性, 目标检测

Abstract:

The YOLOv8n detection algorithm has a large amount of computation and parameters in the driving environment. To address this issue, a lightweight driver facial object detection algorithm YOLOv8-DF was proposed. A lightweight multi-scale convolution module (LMCM) was proposed to replace the Conv module in the network, and the dual-channel design could reduce the computation and parameter quantity of the algorithm; the multi-scale design could enrich the feature information inside the network. The lightweight convolutional GhostConv, Fasterblock module, and C2f module were fused, and a dual-channel lightweight convolution module (DLCM) was fused with the SPPF module. The experimental results show that the average precision of the YOLOv8n-DF algorithm in the test set reaches 99.2%, which is 36.7% lower than that of the YOLOv8n detection algorithm; the amount of computation is reduced by 30.9%, and the frame rate reaches 282 frames/s.

Key words: driver face detection, lightweight convolution, multi-scale feature fusion, real-time performance, object detection

中图分类号: