系统仿真学报 ›› 2025, Vol. 37 ›› Issue (5): 1246-1255.doi: 10.16182/j.issn1004731x.joss.24-0065

• 研究论文 • 上一篇    下一篇

基于知识与大语言模型的高速环境自动驾驶决策研究

王祥, 谭国真   

  1. 大连理工大学 计算机科学与技术学院,辽宁 大连 116081
  • 收稿日期:2024-01-06 修回日期:2024-03-17 出版日期:2025-05-20 发布日期:2025-05-23
  • 第一作者简介:王祥(1997-),男,博士生,研究方向为深度学习与自动驾驶决策。
  • 基金资助:
    国家自然科学基金重点项目(U1808206)

Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model

Wang Xiang, Tan Guozhen   

  1. Department of computer science and technology, Dalian University of Technology, Liaoning 116081, China
  • Received:2024-01-06 Revised:2024-03-17 Online:2025-05-20 Published:2025-05-23

摘要:

针对当前自动驾驶系统缺乏持续学习和可解释性问题。提出具有认知、泛化和学习能力的决策模型,利用大语言模型(large language model, LLM)、注意力机制理解和解释驾驶场景,通过模拟人类驾驶行为和决策过程,实现对驾驶经验的积累和学习并根据驾驶经验不断提升决策能力。在仿真环境中闭环测试决策模型在高速场景的应用,仿真结果表明:知识驱动模型决策成功率比规则和数据学习方法提高了7%和4%,具备泛化和可解释能力,提高了自动驾驶系统的可信度和安全性。

关键词: 驾驶经验, 大语言模型, 注意力机制, 可解释性, 知识驱动

Abstract:

Aiming at the lack of continuous learning and interpretability of current autonomous driving system,a decision model with cognition, generalization and learning ability is proposed. The model utilizes large language model (LLM) and attention mechanisms to understand and explain driving scenes. the system can accumulate and learn from driving experiences, continuously improving its decision-making ability. In a simulation environment, the closed-loop test decision model is applied in high-speed scenarios.The simulation results show that the success rate of the knowledge-driven model is 7% and 4% higher than those of the rule-based and data-driven methods. Additionally, the model exhibits generalization and interpretability, thereby enhancing the reliability and safety of the automatic driving system.

Key words: driving experience, LLM, attention mechanism, interpretability, knowledge-driven

中图分类号: