[1] |
韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43(22): 8569-8591.
|
|
Han Fujia, Wang Xiaohui, Qiao Ji, et al. Review on Artificial Intelligence Based Load Forecasting Research for the New-type Power System[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8591.
|
[2] |
刘雨佳, 樊艳芳, 白雪岩, 等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J]. 电工技术学报, 2023, 38(12): 3277-3288.
|
|
Liu Yujia, Fan Yanfang, Bai Xueyan, et al. Short-term Wind Power Prediction Based on Feature Crossover Mechanism and Error Compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3277-3288.
|
[3] |
乔石, 王磊, 张鹏超, 等. 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46(10): 3940-3951.
|
|
Qiao Shi, Wang Lei, Zhang Pengchao, et al. Short-term Load Forecasting by Long-and Short-term Temporal Networks with Attention Based on Modal Decomposition[J]. Power System Technology, 2022, 46(10): 3940-3951.
|
[4] |
Jiang Huaiguang, Zhang Yingchen, Muljadi E, et al. A Short-term and High-resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3341-3350.
|
[5] |
孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2895.
|
|
Sun Chao, Qi Lü, Zhu Sitong, et al. Ultra-short-term Power Load Forecasting Based on Two-layer XGBoost Algorithm Considering the Influence of Multiple Features[J]. High Voltage Engineering, 2021, 47(8): 2885-2895.
|
[6] |
臧海祥, 许瑞琦, 刘璟璇, 等. 基于多维融合特征和卷积神经网络的多任务用户短期负荷预测[J]. 电力系统自动化, 2023, 47(13): 69-77.
|
|
Zang Haixiang, Xu Ruiqi, Liu Jingxuan, et al. Short-term Load Forecasting for Multi-task Consumers Based on Multi-dimensional Fusion Feature and Convolutional Neural Network[J]. Automation of Electric Power Systems, 2023, 47(13): 69-77.
|
[7] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]///Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[8] |
Guo Yixiu, Li Yong, Qiao Xuebo, et al. BiLSTM Multitask Learning-based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3481-3492.
|
[9] |
Jayashankara M, Shah Priyansh, Sharma Anshul, et al. A Novel Approach for Short-term Energy Forecasting in Smart Buildings[J]. IEEE Sensors Journal, 2023, 23(5): 5307-5314.
|
[10] |
刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
|
|
Liu Guohai, Sun Wenqing, Wu Zhenfei, et al. Short-term Photovoltaic Power Forecasting Based on Attention-GRU Model[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 226-232.
|
[11] |
Imani Maryam. Electrical Load-temperature CNN for Residential Load Forecasting[J]. Energy, 2021, 227: 120480.
|
[12] |
王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799.
|
|
Wang Chen, Wang Ying, Zheng Tao, et al. Multi-energy Load Forecasting in Integrated Energy System Based on ResNet-LSTM Network and Attention Mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1789-1799.
|
[13] |
王炜, 冯斌, 黄刚, 等. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43(23): 9072-9083.
|
|
Wang Wei, Feng Bin, Huang Gang, et al. Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network[J]. Proceedings of the CSEE, 2023, 43(23): 9072-9083.
|
[14] |
Dong Ming, Grumbach L. A Hybrid Distribution Feeder Long-term Load Forecasting Method Based on Sequence Prediction[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 470-482.
|
[15] |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data sets[J]. Science, 2011, 334(6062): 1518-1524.
|
[16] |
Shih S Y, Sun Fankeng, Lee H Y. Temporal Pattern Attention for Multivariate Time Series Forecasting[J]. Machine Learning, 2019, 108(8): 1421-1441.
|