系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2004-2015.doi: 10.16182/j.issn1004731x.joss.24-0282

• 论文 • 上一篇    

基于双重注意力时间卷积长短期记忆网络的短期负荷预测

李丽芬1,4, 张近月1,4, 曹旺斌2,3, 梅华威1,5   

  1. 1.华北电力大学 计算机系,河北 保定 071000
    2.华北电力大学 电子与通信工程系,河北 保定 071000
    3.河北省电力物联网技术重点实验室(华北电力大学),河北 保定 071000
    4.河北省能源电力知识计算重点实验室,河北 保定 071000
    5.复杂能源系统智能计算教育部工程研究中心,河北 保定 071000
  • 收稿日期:2024-03-25 修回日期:2024-05-08 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 曹旺斌
  • 第一作者简介:李丽芬(1970-),女,副教授,博士,研究方向为智能电网及电力物联网,电力系统信息化。
  • 基金资助:
    国家自然科学基金(62001166);河北省自然科学基金(E2019502186)

Short-term Load Forecasting Based on Dual-attention Temporal Convolutional Long Short-term Memory Network

Li Lifen1,4, Zhang Jinyue1,4, Cao Wangbin2,3, Mei Huawei1,5   

  1. 1.Department of Computer, North China Electric Power University, Baoding 071000, China
    2.Department of Electronic & Communication Engineering, North China Electric Power University, Baoding 071000, China
    3.Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071000, China
    4.Hebei Key Laboratory of Knowledge Computing for Energy & Power, Baoding 071000, China
    5.Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education, Baoding 071000, China
  • Received:2024-03-25 Revised:2024-05-08 Online:2025-08-20 Published:2025-08-26
  • Contact: Cao Wangbin

摘要:

为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DA-TCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。

关键词: 负荷预测, 时间卷积网络, 注意力, 残差结构, 相关性分析

Abstract:

In order to improve the accuracy of load forecasting and fully extract the hidden relationships between load and other characteristic factors, a load forecasting method based on dual-attention temporal convolutional LSTM network (DA-TCLSNet) was proposed. Correlation analysis was conducted on the dataset using the maximum information coefficient method to perform feature screening to reduce the computational cost of the model. The model input was constructed using a sliding window. The DA-TCLSNet forecastingmodel was constructed. The temporal convolutional layer extracted dependencies at different time scales and captured the nonlinear characteristics among variables such as load and weather. The multi-head sparse self-attention layer focused on important information. The LSTM network layer explored the long-term dependency of time series. The temporal pattern attention layer realized adaptive learning of the relationships among different variables at the same time step and connected the above modules through a residual structure to improve the expressive power of the model. Experimental results show that the proposed algorithm offers better forecasting performance than other load forecasting methods.

Key words: load forecasting, temporal convolutional network, attention, residual structure, correlation analysis

中图分类号: