系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1499-1511.doi: 10.16182/j.issn1004731x.joss.24-0206

• 论文 • 上一篇    

基于判别式增强的蒸馏学习自监督缺陷检测

冯志远, 陈莹   

  1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2024-03-07 修回日期:2024-05-17 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 陈莹
  • 第一作者简介:冯志远(1998-),男,硕士生,研究方向为计算机视觉、缺陷检测。
  • 基金资助:
    国家自然科学基金(62173160)

Self-supervised Defect Detection via Discriminative Enhancement-based Distillation Learning

Feng Zhiyuan, Chen Ying   

  1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
  • Received:2024-03-07 Revised:2024-05-17 Online:2025-06-20 Published:2025-06-18
  • Contact: Chen Ying

摘要:

针对异常缺陷数据稀缺、类型未知,以及传统知识蒸馏缺陷检测方法缺乏对异常表示多样性的问题,提出一种基于判别式增强的自监督蒸馏学习方法。提出一种基于注意力的多尺度融合模块,通过放大学生网络和教师网络多尺度的特征差异来提高对异常表示的能力;设计一种由特征重加权模块和解码器组成的判别网络,通过进一步强调教师网络中的异常特征来生成更加精准的异常分数图,从而提高缺陷检测分割精度。结果表明:该方法超过了现有的知识蒸馏缺陷检测方法,验证了方法的有效性与优越性。

关键词: 缺陷检测, 知识蒸馏, 基于注意力的多尺度融合模块, 特征重加权模块, 判别网络

Abstract:

To address the issues of scarce and unknown types of abnormal defect data and the lack of diversity in anomaly representation in conventional knowledge distillation defect detection methods, a self-supervised distillation learning method based on discriminative enhancement is proposed. An attention-based multi-scale feature fusion module is proposed, which enhances the capability of anomaly representation by amplifying the multi-scale feature differences between the student network and the teacher network. A discriminative network composed of a feature reweighting module and a decoder is designed to generate more accurate anomaly score maps by further emphasizing the anomaly features in the teacher network, thereby improving the accuracy of the defect detection segmentation. Experiments show that the performance of the proposed method surpasses the existing knowledge distillation defect detection methods, verifying the effectiveness and superiority of the proposed method.

Key words: defect detection, knowledge distillation, attention-based multi-scale fusion module, feature reweighting module, discriminative network

中图分类号: