系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1522-1530.doi: 10.16182/j.issn1004731x.joss.24-0081

• 论文 • 上一篇    

基于时空网络的变电站机器人视觉避障研究

程翀1, 王理厦1, 段松涛1, 熊晓光1, 葛贤军2   

  1. 1.电力规划总院有限公司,北京 100120
    2.电力系统及发电设备控制和仿真国家重点实验室,北京 100084
  • 收稿日期:2024-01-19 修回日期:2024-02-07 出版日期:2025-06-20 发布日期:2025-06-18
  • 第一作者简介:程翀(1988-),男,高工,博士,研究方向为电网技术、人工智能、机器人技术。
  • 基金资助:
    国家电网有限公司科技项目(B3094022021B)

Research on Obstacle Avoidance of Substation Robot Based on Spatiotemporal Networks

Cheng Chong1, Wang Lixia1, Duan Songtao1, Xiong Xiaoguang1, Ge Xianjun2   

  1. 1.Electric Power Planning Institute Co. , Ltd, Beijing 100120, China
    2.State Key Lab of Control and Simulation of Power Systems and Generation Equipments, Beijing 100084, China
  • Received:2024-01-19 Revised:2024-02-07 Online:2025-06-20 Published:2025-06-18

摘要:

为提升变电站机器人在复杂环境中的视觉避障能力,提出了一种基于时空网络的机器人视觉避障方法。利用传统图像处理技术增强道路信息,设计轻量级深层卷积神经网络结构,从空间域角度提取道路特征;基于道路空间特征引入长短期记忆网络,从时域的角度对道路变化规律进行挖掘,并利用分类回归预测结构分别对机器人避障方向和角度进行预测;针对变电站道路高重复性特点,引入特征过滤模块来降低冗余特征计算,保障网络应用时的实时性。实验结果表明:该方法可以有效提取变电站道路场景时空特征,能更准确地预测机器人下一步动作,更好地完成导航避障任务。

关键词: 变电站机器人, 时空网络, 注意力结构, 分类回归预测, 相似特征过滤

Abstract:

In order to improve the visual obstacle avoidance ability of substation robots in complex environments, a robot visual obstacle avoidance method based on spatiotemporal networks is proposed. The method utilizes traditional image processing techniques to enhance road information and designs a lightweight deep convolutional neural network structure to extract road features from a spatial domain perspective; based on the spatial characteristics of the road, a long short-term memory network is introduced to mine the changes in the road from a temporal perspective, and a classification regression prediction structure is used to predict the robot's obstacle avoidance direction and angle; considering the highly repetitive characteristics of substation roads, a feature filtering module is introduced to reduce redundant feature calculations and ensure real-time performance during network applications. The experimental results show that the proposed method can effectively extract spatiotemporal features of substation road scenes, this method can more accurately predict the next action of the robot and better complete navigation obstacle avoidance tasks.

Key words: substation robot, spatiotemporal network, attention structure, classification regression prediction, similar feature filtering

中图分类号: