1 |
Zheng Yu, Capra L, Wolfson O, et al. Urban Computing: Concepts, Methodologies, and Applications[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38.
|
2 |
Song Xuan, Zhang Haoran, Akerkar Rajendra, et al. Big Data and Emergency Management: Concepts, Methodologies, and Applications[J]. IEEE Transactions on Big Data, 2022, 8(2): 397-419.
|
3 |
Li Shuzhe, Chen Wei, Yan Bingqi, et al. Self-supervised Contrastive Representation Learning for Large-scale Trajectories[J]. Future Generation Computer Systems, 2023, 148: 357-366.
|
4 |
Yao Huaxiu, Tang Xianfeng, Wei Hua, et al. Revisiting Spatial-temporal Similarity: A Deep Learning Framework for Traffic Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5668-5675.
|
5 |
Li Kuilin, Zhai Chunjie, Xu Jianmin. Short-term Traffic Flow Prediction Using a Methodology Based on ARIMA and RBF-ANN[C]//2017 Chinese Automation Congress (CAC). Piscataway: IEEE, 2017: 2804-2807.
|
6 |
Fu Rui, Zhang Zuo, Li Li. Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway: IEEE, 2016: 324-328.
|
7 |
Liu Hongjie, Xu Hongzhe, Yan Yu, et al. Bus Arrival Time Prediction Based on LSTM and Spatial-Temporal Feature Vector[J]. IEEE Access, 2020, 8: 11917-11929.
|
8 |
Zhang Junbo, Zheng Yu, Qi Dekang, et al. DNN-based Prediction Model for Spatio-temporal Data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: 92.
|
9 |
Zhang Junbo, Zheng Yu, Qi Dekang. Deep Spatio-temporal Residual Networks for Citywide Crowd Flows Prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 1655-1661.
|
10 |
Lin Ziqian, Feng Jie, Lu Ziyang, et al. DeepSTN+: Context-aware Spatial-temporal Neural Network for Crowd Flow Prediction in Metropolis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1020-1027.
|
11 |
Wang Hongnian, Su Han. STAR: A Concise Deep Learning Framework for Citywide Human Mobility Prediction[C]//2019 20th IEEE International Conference on Mobile Data Management (MDM). Piscataway: IEEE, 2019: 304-309.
|
12 |
Dai Genan, Kong Weiyang, Liu Yubao, et al. Multi-perspective Convolutional Neural Networks for Citywide Crowd Flow Prediction[J]. Applied Intelligence, 2023, 53(8): 8994-9008.
|
13 |
Ding Fei, Zhu Yue, Yin Qi, et al. MS-ResCnet: A Combined Spatiotemporal Modeling and Multi-scale Fusion Network for Taxi Demand Prediction[J]. Computers and Electrical Engineering, 2023, 105: 108558.
|
14 |
Yao Huaxiu, Wu Fei, Ke Jintao, et al. Deep Multi-view Spatial-temporal Network for Taxi Demand Prediction[C]//Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2588-2595.
|
15 |
Guo Shengnan, Lin Youfang, Li Shijie, et al. Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
|
16 |
Chen Cen, Li Kenli, Teo Sin G, et al. Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(4): 42.
|
17 |
Zhou Qianqian, Chen Nan, Lin Siwei. FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features[J]. Sensors, 2022, 22(18): 6921.
|
18 |
陈静, 张昭冲, 王琳凯, 等. 基于卷积长短时记忆网络的短时公交客流量预测[J]. 系统仿真学报, 2024, 36(2): 476-486.
|
|
Chen Jing, Zhang Zhaochong, Wang Linkai, et al. Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network[J]. Journal of System Simulation, 2024, 36(2): 476-486.
|
19 |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
20 |
Woo Sanghyun, Park Jongchan, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
21 |
Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13708-13717.
|
22 |
Humaira H, Rasyidah R. Determining the Appropiate Cluster Number Using Elbow Method for K-means Algorithm[C]//Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018. Nitra Slovakia: EAI, 2018: 2292388.
|