系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 607-622.doi: 10.16182/j.issn1004731x.joss.23-1313

• 论文 • 上一篇    

基于时空多视野注意残差网络的城市区域交通流量预测

陈静, 杨国威, 张昭冲, 王伟   

  1. 天津职业技术师范大学 信息技术工程学院,天津 300222
  • 收稿日期:2023-11-01 修回日期:2023-11-26 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 杨国威
  • 第一作者简介:陈静(1984-),女,副教授,博士,研究方向为机器学习、数据分析。
  • 基金资助:
    天津市教委科研计划(2021KJ008);天津市津南区科技计划(20220105)

City Regional Traffic Flow Prediction Based on Spatiotemporal Multi-view Attention Residual Network

Chen Jing, Yang Guowei, Zhang Zhaochong, Wang Wei   

  1. School of Information Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
  • Received:2023-11-01 Revised:2023-11-26 Online:2025-03-17 Published:2025-03-21
  • Contact: Yang Guowei

摘要:

为高效、全面提取城市中复杂的时空相关性,提出一种新的端到端的深度学习框架—时空多视野注意残差网络(spatiotemporal multi-view attention residual network, ST-MVAR),用于城市区域交通流量预测。整合交通流量的临近性、周期性、趋势性和外部因素作为网络输入,该网络通过跳跃连接,形成多层嵌套残差网络结构;设计多视野扩展模块,用于捕获交通流量对不同距离的空间依赖;引入坐标注意力机制,有效建立交通流量的时空相关性;通过K-Means聚类方法获取各时段交通流量所属模式,作为额外特征,进一步提高模型的预测精度。实验结果表明:ST-MVAR使用更少的参数获得更高的性能,相比之前的方法RMSE降低14.2%。

关键词: 交通流量预测, 残差网络, 视野扩展, 坐标注意力, K-Means聚类

Abstract:

. However, efficiently and comprehensively capturing the complex spatiotemporal correlations within urban traffic flow presents a key challenge. Existing research methods struggle to fully capture these spatiotemporal dependencies. To address these issues, we propose a novel end-to-end deep learning framework called the spatiotemporal multi-view attention residual network (ST-MVAR) for predicting traffic flow in urban areas. we integrate the proximity, periodicity, trend, and external factors of traffic flow as inputs to the network. This network employs skip connections to form a multi-layer nested residual network structure. Additionally, we design a Multi-View Extension module to capture spatial dependencies of traffic flow at various distances and introduce a coordinate attention network to effectively establish the spatiotemporal correlations within traffic flow. Furthermore, we use the k-means clustering method to obtain patterns for each cross-sectional time traffic flow and incorporate them as additional features to further enhance the model's predictive accuracy. Experimental results demonstrate that ST-MVAR achieves higher performance with fewer parameters, 14.2% lower RMSE compared to the best previous methods.

Key words: traffic flow prediction, residual network, view extension, coordinate attention, K-Means clustering

中图分类号: