系统仿真学报 ›› 2023, Vol. 35 ›› Issue (3): 592-603.doi: 10.16182/j.issn1004731x.joss.21-1145

• 论文 • 上一篇    下一篇

航母甲板上舰载机的混合避障和仿真

薛均晓1(), 孔祥燕1(), 董博威2, 陶浩3, 管海洋2, 石磊1, 徐明亮2   

  1. 1.郑州大学 网络空间安全学院, 河南 郑州 450002
    2.郑州大学 计算机与人工智能学院, 河南 郑州 450001
    3.中国船舰研究设计中心, 湖北 武汉 430064
  • 收稿日期:2021-11-09 修回日期:2022-01-18 出版日期:2023-03-30 发布日期:2023-03-22
  • 通讯作者: 孔祥燕 E-mail:xuejx@zzu.edu.cn;m15537229290@163.com
  • 作者简介:薛均晓(1982-),男,副教授,博士,研究方向为人工智能、虚拟现实。E-mail:xuejx@zzu.edu.cn
  • 基金资助:
    国家自然科学基金(62036010);河南省自然科学基金(202300410378);河南省高等学校青年骨干教师培养计划(22020GGJS014)

Obstacle Avoidance and Simulation of Carrier-Based Aircraft on the Deck of Aircraft Carrier

Junxiao Xue1(), Xiangyan Kong1(), Bowei Dong2, Hao Tao3, Haiyang Guan2, Lei Shi1, Mingliang Xu2   

  1. 1.School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
    2.School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
    3.China Ship Research and Design Center, Wuhan 430064, China
  • Received:2021-11-09 Revised:2022-01-18 Online:2023-03-30 Published:2023-03-22
  • Contact: Xiangyan Kong E-mail:xuejx@zzu.edu.cn;m15537229290@163.com

摘要:

针对航母甲板上舰载机混合避障随机性强、实时性差、规划速度慢等问题,结合最小二乘法与DDPG(deep deterministic policy gradient)算法提出一种PDDPG(predictive depth deterministic policy gradient)算法。该方法利用最小二乘法预测航母甲板上动态障碍物的短期轨迹。DDPG根据动态障碍物的短期轨迹为智能体提供在连续空间里学习和决策行为的能力。基于人工势场设置奖励函数,提高混合避障算法的收敛速度和准确率。使用Unity 3D构建了航母甲板高动态复杂场景,进行舰载机混合避障仿真实验。实验结果表明,PDDPG能较准确地实现航母甲板上舰载机的混合避障,与其他方法相比,在精度上提高了7%~30%。与DQN(deep Q network)相比,路径长度和转弯角度上分别减少了100个单位和400o~450o。

关键词: 路径规划, 混合避障, 最小二乘法, 人工势场, DDPG

Abstract:

A predictive depth deterministic policy gradient (PDDPG) algorithm is proposed by combining the least squares method with deep deterministic policy gradient(DDPG) for the problems of strong randomness, poor real-time performance, and slow planning speed by obstacle avoidance on aircraft carrier deck. The short-term trajectory of dynamic obstacles on the deck is predicted by the least square method. DDPG is used to provide agents with the ability to learn and make decisions in continuous space by the short-term trajectory of dynamic obstacles. The reward function is set based on the artificial potential field to improve the convergence speed and accuracy of the algorithm. A high dynamic complex scene of aircraft carrier deck is constructed using unity 3D to simulate experiments of obstacle avoidance method. The experimental results show that the method can accurately realize the hybrid obstacle avoidance of carrier aircraft on the aircraft carrier deck, and the accuracy is improved by 7% ~ 30% compared with other methods. Compared with deep Q network (DQN), the path length and turning angle are reduced by 100 units and 400o~450o respectively.

Key words: path planning, obstacle avoidance, least square method, artificial potential field, DDPG(deep deterministic policy gradient)

中图分类号: