Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (6): 1278-1289.doi: 10.16182/j.issn1004731x.joss.22-0192
• Papers • Previous Articles Next Articles
Xu Wang(), Weidong Ji(
), Guohui Zhou
Received:
2022-03-09
Revised:
2022-04-13
Online:
2023-06-29
Published:
2023-06-20
Contact:
Weidong Ji
E-mail:wx971025@l63.com;kingjwd@126.com
CLC Number:
Xu Wang, Weidong Ji, Guohui Zhou. Fault Indicator Configuration Optimization Based on Cooperative Game Particle Swarm Algorithm[J]. Journal of System Simulation, 2023, 35(6): 1278-1289.
Table 1
Standard test function
函数编号 | 测试函数 | 解空间 | 模态 |
---|---|---|---|
F1 | Sphere Function | [-5.12, 5.12] n | 单 |
F2 | Trid Function | [-900, 900] n | 单 |
F3 | Sum of Different Powers Function | [-1, 1] n | 单 |
F4 | Dixon-Price Function | [-10, 10] n | 单 |
F5 | Sum Squares Function | [-5.12, 5.12] n | 单 |
F6 | Zakharov Function | [-10, 10] n | 单 |
F7 | Michalewicz Function | [0, | 多 |
F8 | Ackley Function | [-32.76, 32.76] n | 多 |
F9 | Rastrigin Function | [-5.12, 5.12] n | 多 |
F10 | Perm Function 0, D, BETA | [-30, 30] n | 多 |
F11 | Levy Function | [-10, 10] n | 多 |
F12 | Griewank Function | [-600, 600] n | 多 |
Table 3
Comparison of optimal solution between MCGPSO algorithm and classical algorithm
测试函数 | MCGPSO | PSO | GA | DE |
---|---|---|---|---|
Rank | 1.50 | 2.41 | 2.75 | 3.33 |
F1 | 0 | 7.207×10-2 | 6.329×10-1 | 8.244×101 |
F2 | -1.487×102 | -1.488×102 | -1.324×102 | -3.055×103 |
F3 | 0 | 7.949×1042 | 2.191×1074 | 1.170×1013 |
F4 | 9.844×10-1 | 7.905×10-1 | 9.675×10-1 | 5.820×105 |
F5 | 0 | 1.299×102 | 1.977×102 | 6.969×102 |
F6 | 1.337 | 1.571 | 2.608 | 8.706×104 |
F7 | -7.359 | -9.515 | -9.902 | -9.143 |
F8 | 8.882×10-16 | 3.113 | 3.871 | -9.143 |
F9 | 0 | 8.442×101 | 2.001×102 | 3.403×102 |
F10 | 4.605×1087 | 3.333×10106 | 9.194×10159 | 3.127×1096 |
F11 | 2.649 | 3.698 | 4.282 | 3.404×104 |
F12 | 3.039×10-1 | 5.414×10-2 | 9.717×10-1 | 9.869×10-1 |
Table 4
Comparison of optimal solution between MCGPSO algorithm and excellent improved PSO algorithm in CEC2013 test set
测试函数 | MCGPSO | GOPSO | OPSO | FIPS |
---|---|---|---|---|
Rank | 1.428 | 2.250 | 2.357 | 3.107 |
F2 | -1.30E×103 | 3.19×107 | 3.26×107 | 5.27×107 |
F3 | -1.20×103 | 6.20×109 | 4.03×109 | 3.00×108 |
F4 | -1.10×103 | 3.38×104 | 3.36×104 | 5.88×104 |
F5 | -9.95×102 | -1.00×103 | -1.00×103 | -1.00×103 |
F7 | -8.00×102 | -6.84×102 | -6.87×102 | -7.33×102 |
F9 | -6.00×102 | -5.66×102 | -5.65×102 | -5.64×102 |
F10 | -5.00×102 | -4.63×102 | -4.85×102 | -4.88×102 |
F11 | -3.68×102 | -3.46×102 | -3.43×102 | -2.97×102 |
F12 | -3.00×102 | -1.56×102 | -1.47×102 | -1.02×102 |
F13 | -2.00×102 | 3.31×101 | 2.80×101 | -1.10×101 |
F14 | 2.49×103 | 1.42×103 | 1.53×103 | 5.98×103 |
F15 | 1.00×102 | 4.79×103 | 5.64×103 | 7.63×103 |
F17 | 5.27×102 | 3.69×102 | 3.76×102 | 5.02×102 |
F18 | 4.02×102 | 6.87×102 | 6.57×102 | 6.23×102 |
F19 | 5.12×102 | 5.06×102 | 5.06×102 | 5.16×102 |
F20 | 6.00×102 | 6.15×102 | 6.15×102 | 6.15×102 |
F21 | 7.00×102 | 1.02×103 | 1.12×103 | 1.03×103 |
F22 | 3.48×103 | 2.85×103 | 2.66×103 | 7.01×103 |
F23 | 1.00×103 | 6.15×103 | 5.77×103 | 8.73×103 |
F27 | 1.50×103 | 2.52×103 | 2.52×103 | 2.60×103 |
F28 | 1.60×103 | 2.49×103 | 2.28×103 | 4.41×103 |
1 | 何乐彰, 何炳源, 徐俊杰, 等. 计及可靠性约束的配电网故障指示器优化布点方法[J]. 电力系统自动化, 2020, 44(18): 116-123. |
He Lezhang, He Bingyuan, Xu Junjie, et al. Optimal Placement Method of Fault Indicator in Distribution Network Considering Reliability Constraints[J]. Automation of Electric Power Systems, 2020, 44(18): 116-123. | |
2 | 康琦, 安静, 汪镭, 等. 自然计算的研究综述[J]. 电子学报, 2012, 40(3): 548-558. |
Kang Qi, An Jing, Wang Lei, et al. Nature-Inspired Computation: a Survey[J]. Acta Electronica Sinica, 2012, 40(3): 548-558. | |
3 | Falaghi H, Haghifam M R, Tabrizi M R O. Fault Indicators Effects on Distribution Reliability Indices[C]//CIRED 2005 18th International Conference and Exhibition on Electricity Distribution. London, UK: IET, 2005: 1-4. |
4 | Cong D P, Raison B, Rognon J P, et al. Optimization of Fault Indicators Placement with Dispersed Generation Insertion[C]//IEEE Power Engineering Society General Meeting, 2005. Piscataway, NJ, USA: IEEE, 2005: 355-362. |
5 | 陈奎, 张云, 王洪寅, 等. 基于免疫算法的含分布式电源配电网的故障定位[J]. 电力系统保护与控制, 2017, 45(24): 57-62. |
Chen Kui, Zhang Yun, Wang Hongyin, et al. Fault-Section Location of Distribution Network Containing Distributed Generation Based on Immune Algorithm[J]. Power System Protection and Control, 2017, 45(24): 57-62. | |
6 | 黄代政, 龚仁喜, 阎昌国, 等. 免疫约束多目标算法在微电网能量优化的应用[J]. 系统仿真学报, 2014, 26(1): 225-229. |
Huang Daizheng, Gong Renxi, Yan Changguo, et al. Immune Constrained Multi-objective Optimization for Microgrids Energy Management[J]. Journal of System Simulation, 2014, 26(1): 225-229. | |
7 | 刘长良, 王鹏飞, 刘帅, 等. 一种改进的CS算法及其在微电网优化中的应用[J]. 系统仿真学报, 2018, 30(3): 930-936. |
Liu Changliang, Wang Pengfei, Liu Shuai, et al. An Improved CS Algorithm and Its Application in Micro Grid Optimization[J]. Journal of System Simulation, 2018, 30(3): 930-936. | |
8 | 高聪, 吴定会, 潘庭龙, 等. 基于免疫粒子群算法的微电网经济运行优化[J]. 系统仿真学报, 2018, 30(2): 636-646. |
Gao Cong, Wu Dinghui, Pan Tinglong, et al. Optimal Economic Dispatch of Microgrid Based on Immune Particle Swarm Optimization Algorithm[J]. Journal of System Simulation, 2018, 30(2): 636-646. | |
9 | 李晓利, 高金峰. 用于配电网多目标无功优化的改进粒子群优化算法[J]. 电力自动化设备, 2019, 39(1): 106-111. |
Li Xiaoli, Gao Jinfeng. Improved Particle Swarm Optimization Algorithm for Multi-objective Reactive Power Optimization of Distribution Network[J]. Electric Power Automation Equipment, 2019, 39(1): 106-111. | |
10 | 徐鹏飞, 邢仁周. 粒子群优化算法含分布式电源配电网故障定位[J]. 电源技术, 2018, 42(4): 591-592, 600. |
Xu Pengfei, Xing Renzhou. Fault Location of Distribution Network with Distributed Power Supply by Particle Swarm Optimization Algorithm[J]. Chinese Journal of Power Sources, 2018, 42(4): 591-592, 600. | |
11 | Ismail A M, Mohamad M S, Abdul Majid H, et al. An Improved Hybrid of Particle Swarm Optimization and the Gravitational Search Algorithm to Produce a Kinetic Parameter Estimation of Aspartate Biochemical Pathways[J]. Biosystems, 2017, 162: 81-89. |
12 | Si Wen, Qin Bingyang, Li Qingquan, et al. A Novel Adaptive Wavelet Threshold Estimation Based on Hybrid Particle Swarm Optimization for Partial Discharge Signal Denoising[J]. Optik, 2019, 181: 175-184. |
13 | Zhao Xiaorong, Zhou Yuren, Xiang Yi. A Grouping Particle Swarm Optimizer[J]. Applied Intelligence, 2019, 49(8): 2862-2873. |
14 | Chen Ke, Zhou Fengyu, Yin Lei, et al. A Hybrid Particle Swarm Optimizer with Sine Cosine Acceleration Coefficients[J]. Information Sciences, 2018, 422: 218-241. |
15 | 季伟东, 岳玉麒, 王旭, 等. 基于降维和聚类的大规模多目标自然计算方法[J]. 系统仿真学报, 2023, 35(1): 41-56. |
Ji Weidong, Yue Yuqi, Wang Xu, et al. Large-scale Multi-objective Natural Computation Based on Dimensionality Reduction and Clustering[J]. Journal of System Simulation, 2023, 35(1): 41-56. | |
16 | Zhou Jianhong, Fang Wei, Wu Xiaojun, et al. An Opposition-Based Learning Competitive Particle Swarm Optimizer[C]//2016 IEEE Congress on Evolutionary Computation(CEC). Piscataway, NJ, USA: IEEE, 2016: 515-521. |
17 | 徐利锋, 黄祖胜, 杨中柱, 等. 引入多级扰动的混合型粒子群优化算法[J]. 软件学报, 2019, 30(6): 1835-1852. |
Xu Lifeng, Huang Zusheng, Yang Zhongzhu, et al. Mixed Particle Swarm Optimization Algorithm with Multistage Disturbances[J]. Journal of Software, 2019, 30(6): 1835-1852. | |
18 | Cheng Ran, Jin Yaochu. A Competitive Swarm Optimizer for Large Scale Optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191-204. |
19 | Koufakou A, Georgiopoulos M. A Fast Outlier Detection Strategy for Distributed High-dimensional Data Sets with Mixed Attributes[J]. Data Mining and Knowledge Discovery, 2010, 20(2): 259-289. |
20 | Han Shuai, Zhao Cong, Meng Weixiao, et al. Cosine Similarity Based Fingerprinting Algorithm in WLAN Indoor Positioning Against Device Diversity[C]//2015 IEEE International Conference on Communications(ICC). Piscataway, NJ, USA: IEEE, 2015: 2710-2714. |
21 | Storn R, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
22 | Wang Hui, Wu Zhijian, Rahnamayan S, et al. Enhancing Particle Swarm Optimization Using Generalized Opposition-based Learning[J]. Information Sciences, 2011, 181(20): 4699-4714. |
23 | Wang Hui, Li Hui, Liu Yong, et al. Opposition-based Particle Swarm Algorithm with Cauchy Mutation[C]//2007 IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2007: 4750-4756. |
24 | Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210. |
25 | 张强, 李伟健, 张志华, 等. 基于粒子群优化算法的配电网故障指示器优化配置[J]. 电力电容器与无功补偿, 2021, 42(6): 190-195. |
Zhang Qiang, Li Weijian, Zhang Zhihua, et al. Optimal Configuration for Fault Indicator of Distribution Network Based on PSO Algorithm[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(6): 190-195. |
[1] | Yan Bai, Lulu Wu, Yin'e He, Yuying Wang. Energy Consumption Prediction for Air-conditioning System Based on Dynamic Temperature Control [J]. Journal of System Simulation, 2022, 34(2): 366-375. |
[2] | Niu Kan, Li Bing, Fu Qiang. Method of Battlefield Frequency Allocation Based on Chaotic Perturbation Mechanism Particle Swarm Optimization Algorithm [J]. Journal of System Simulation, 2021, 33(8): 1905-1913. |
[3] | Wei Ruixuan, Wu Zichen. Study on Task Allocation of UAV Swarm Based on Cognitive Control [J]. Journal of System Simulation, 2021, 33(7): 1574-1581. |
[4] | Sun Yuzhen, Tang Yiwei, Li Shuai. Load System Modeling of Ultra-Supercritical Coal-Fired Power Unit Based on Improved Particle Swarm Optimization [J]. Journal of System Simulation, 2021, 33(4): 875-882. |
[5] | Shao Cheng, Sun Hongyuan, Zhang Lin. Simulation of Anti-ship Missile Automatic Control Section Trajectory Based on PSO-LSSVM [J]. Journal of System Simulation, 2021, 33(4): 918-926. |
[6] | Yin Zhishuai, He Jiaxiong, Nie Linzhen, Guan Jiayi. Longitudinal Adaptive Control of Autonomous Vehicles Base on Optimization Algorithm [J]. Journal of System Simulation, 2021, 33(2): 409-420. |
[7] | Yu Junqi, Jing Wenqiang, Zhao Anjun, Ren Yanhuan, Zhou Meng, Huang Xinle, Yang Xue. Cold Load Prediction Model Based on Improved PSO-BP Algorithm [J]. Journal of System Simulation, 2021, 33(1): 54-61. |
[8] | Wang Chuang, Zhang Yong, Li Xuegui, Dong Hongli. An Improved Particle Swarm Optimization Algorithm and Its Application in Clustering analysis [J]. Journal of System Simulation, 2020, 32(8): 1577-1587. |
[9] | Li Changhua, Bi Chenggong, Li Zhijie. Crowd Evacuation Model Based on Improved PSO Algorithm [J]. Journal of System Simulation, 2020, 32(6): 1000-1008. |
[10] | Qing Dongsheng, Zhang Xiaofang, Li Jianjun, Guo Rui, Deng Qiaoling. Spatial Structure Optimization of Natural Forest Based on Bee Colony-particle Swarm Algorithm [J]. Journal of System Simulation, 2020, 32(3): 371-381. |
[11] | Lu Zhanwen, Cheng Xingong, Zhang Yongfeng. Global Optimization Method Based on Consensus Particle Swarm Optimization [J]. Journal of System Simulation, 2020, 32(10): 1936-1942. |
[12] | Zhang Jinfeng, Yang Taoning, Ma Weihao. Ship Speed Optimization Based on Multi-objective Particle Swarm Algorithm [J]. Journal of System Simulation, 2019, 31(4): 787-794. |
[13] | Shi Qinqin, Xu Qiang, Zhang Jianping. Improved DV-Hop Localization Scheme Based on the Best Path Matching Strategy [J]. Journal of System Simulation, 2019, 31(2): 316-324. |
[14] | Liu Yu, Zhao Gouxin. Optimization of Frictionless Cylinder-structure Based on PSO [J]. Journal of System Simulation, 2018, 30(9): 3564-3570. |
[15] | Bai Shuhua, Kuang Mingxing. Design and Study of Forest Fire Forecasting Based on PSO and GA-BP Neural Network [J]. Journal of System Simulation, 2018, 30(5): 1739-1748. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||