Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (6): 1290-1307.doi: 10.16182/j.issn1004731x.joss.23-0232
• Papers • Previous Articles Next Articles
Jiaxin Deng(), Damin Zhang(
), Qing He, Jianping Zhao
Received:
2023-03-01
Revised:
2023-03-17
Online:
2023-06-29
Published:
2023-06-20
Contact:
Damin Zhang
E-mail:jxdeng_gzu@163.com;1203813362@qq.com
CLC Number:
Jiaxin Deng, Damin Zhang, Qing He, Jianping Zhao. Golden Eagle Optimizer Algorithm Combining Levy Flight and Brownian Motion[J]. Journal of System Simulation, 2023, 35(6): 1290-1307.
Table 1
Parameter setting of each algorithm
算法 | 参数设置 |
---|---|
BOA | p=0.8,c=0.01,a=0.1 |
FA | γ =1,β0=2,α =2 |
GWO | amax=2,amin=0 |
PSO | ωmax=0.9,ωmin=0.2,c1=c2=2 |
SCA | a=2 |
SSA | - |
SOA | fc=2 |
WOA | amax=2,amin=0 |
ISOA | fc=2 |
RDSSA | - |
EIW_PSO | - |
CASSA | ωmax=0.9,ωmin=0.2,Pcr=0.3,xcraziness=0.000 1 |
GEO | Pa=[0.5, 2],Pc=[1, 0.5] |
GEO_DLS | u=0.2, Pa=[0.5, 2], Pc=[1, 0.5], ε =0.3, Q=0.8 |
LRBGEO | Pa=[0.5, 2],Pc=[1, 0.5],d=1 |
Table 2
Benchmark function
函数 | 名称 | f* | 定义域 | 维度 | 特征 |
---|---|---|---|---|---|
F1 | Sphere | 0 | [-100, 100] | 30 | 单峰 |
F2 | Schwefel 2.22 | 0 | [-10, 10] | 30 | 单峰 |
F3 | Schwefel 1.2 | 0 | [-100, 100] | 30 | 单峰 |
F4 | Schwefel 2.21 | 0 | [-100, 100] | 30 | 单峰 |
F5 | Beale | 0 | [-4.5, 4.5] | 2 | 单峰 |
F6 | Matyas | 0 | [-10,10] | 2 | 单峰 |
F7 | Three-hump camel | 0 | [-5, 5] | 2 | 单峰 |
F8 | Rastrigin | 0 | [-5.12, 5.12] | 30 | 多峰 |
F9 | Ackley1 | 0 | [-32, 32] | 30 | 多峰 |
F10 | Griewank | 0 | [-600, 600] | 30 | 多峰 |
F11 | Himmelblau | 0 | [-5, 5] | 2 | 多峰 |
F12 | Periodic | 0.9 | [-50, 50] | 30 | 多峰 |
F13 | Salomon | 0 | [-100, 100] | 30 | 多峰 |
F14 | Yang 4 | -1 | [-10, 10] | 30 | 多峰 |
Table 3
Comparison of LRBGEO and classical basic algorithms test results
函数 | 算法 | 最优值 | 平均值 | 标准差 | SR/% | 函数 | 算法 | 最优值 | 平均值 | 标准差 | SR/% |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | BOA | 1.44E-14 | 1.69E-14 | 9.40E-16 | 100 | F8 | BOA | 0 | 3.39E+00 | 2.40E+01 | 94 |
FA | 1.10E-16 | 1.49E-16 | 1.83E-17 | 100 | FA | 9.95E-01 | 5.63E+00 | 2.52E+00 | 0 | ||
GWO | 2.00E-73 | 3.97E-70 | 6.76E-70 | 100 | GWO | 0 | 8.32E-02 | 4.66E-01 | 96 | ||
PSO | 3.59E-15 | 4.11E-11 | 1.68E-10 | 100 | PSO | 2.62E+01 | 3.99E+01 | 9.80E+00 | 0 | ||
SCA | 3.37E-08 | 8.80E-04 | 2.38E-03 | 26 | SCA | 2.68E-06 | 1.55E+01 | 2.54E+01 | 4 | ||
SSA | 5.86E-09 | 9.40E-09 | 1.90E-09 | 100 | SSA | 2.29E+01 | 4.74E+01 | 1.59E+01 | 0 | ||
SOA | 6.45E-22 | 1.72E-16 | 4.94E-16 | 100 | SOA | 0 | 5.23E-14 | 1.91E-13 | 100 | ||
WOA | 1.05E-189 | 9.88E-173 | 0 | 100 | WOA | 0 | 0 | 0 | 100 | ||
GEO | 7.70E-13 | 6.91E-12 | 7.57E-12 | 100 | GEO | 9.95E-01 | 1.24E+01 | 4.37E+00 | 0 | ||
LRBGEO | 0 | 0 | 0 | 100 | LRBGEO | 0 | 0 | 0 | 100 | ||
F2 | BOA | 1.86E-12 | 9.17E-12 | 2.87E-12 | 100 | F9 | BOA | 6.99E-12 | 1.12E-11 | 1.59E-12 | 100 |
FA | 3.70E-10 | 6.40E-10 | 9.05E-11 | 100 | FA | 7.10E-10 | 1.08E-09 | 1.32E-10 | 100 | ||
GWO | 1.86E-42 | 4.83E-41 | 5.26E-41 | 100 | GWO | 7.99E-15 | 1.28E-14 | 2.76E-15 | 100 | ||
PSO | 5.70E-08 | 1.39E-05 | 2.44E-05 | 68 | PSO | 2.11E-07 | 1.88E-06 | 2.74E-06 | 98 | ||
SCA | 7.75E-09 | 6.19E-06 | 1.15E-05 | 80 | SCA | 1.35E-04 | 1.27E+01 | 9.67E+00 | 0 | ||
SSA | 1.75E-04 | 6.16E-01 | 8.07E-01 | 0 | SSA | 1.71E-05 | 1.53E+00 | 9.92E-01 | 0 | ||
SOA | 1.08E-16 | 2.29E-14 | 5.05E-14 | 100 | SOA | 1.34E-11 | 1.55E-09 | 4.12E-09 | 100 | ||
WOA | 7.31E-119 | 3.96E-109 | 1.93E-108 | 100 | WOA | 8.88E-16 | 4.01E-15 | 2.23E-15 | 100 | ||
GEO | 4.58E-02 | 5.92E-01 | 3.91E-01 | 0 | GEO | 3.25E-07 | 5.09E-01 | 6.77E-01 | 56 | ||
LRBGEO | 0 | 0 | 0 | 100 | LRBGEO | 8.88E-16 | 8.88E-16 | 0 | 100 | ||
F3 | BOA | 1.47E-14 | 1.70E-14 | 1.03E-15 | 100 | F10 | BOA | 0 | 9.93E-16 | 1.16E-15 | 100 |
FA | 5.25E-18 | 9.03E-18 | 2.07E-18 | 100 | FA | 7.40E-03 | 4.64E-02 | 2.68E-02 | 0 | ||
GWO | 8.31E-24 | 2.52E-19 | 1.53E-18 | 100 | GWO | 0 | 1.37E-03 | 4.41E-03 | 90 | ||
PSO | 2.01E+00 | 7.16E+00 | 3.23E+00 | 0 | PSO | 5.22E-15 | 7.88E-03 | 8.82E-03 | 40 | ||
SCA | 1.33E+02 | 2.65E+03 | 2.95E+03 | 0 | SCA | 2.86E-06 | 1.60E-01 | 2.18E-01 | 2 | ||
SSA | 5.28E+00 | 5.77E+01 | 4.93E+01 | 0 | SSA | 1.57E-08 | 8.17E-03 | 8.52E-03 | 38 | ||
SOA | 1.97E-02 | 1.55E+01 | 5.95E+01 | 0 | SOA | 0 | 1.60E-03 | 1.13E-02 | 98 | ||
WOA | 1.14E+03 | 1.12E+04 | 6.32E+03 | 0 | WOA | 0 | 2.36E-03 | 9.51E-03 | 94 | ||
GEO | 2.36E+04 | 5.44E+04 | 1.41E+04 | 0 | GEO | 1.29E-07 | 6.40E-03 | 7.70E-03 | 50 | ||
LRBGEO | 2.92E-21 | 1.57E-20 | 8.24E-21 | 100 | LRBGEO | 0 | 0 | 0 | 100 | ||
F4 | BOA | 1.05E-11 | 1.15E-11 | 5.77E-13 | 100 | F11 | BOA | 2.46E-04 | 2.98E-03 | 2.37E-03 | 0 |
FA | 7.11E-10 | 1.43E-09 | 2.10E-10 | 100 | FA | 9.28E-26 | 2.77E-23 | 2.82E-23 | 100 | ||
GWO | 7.43E-19 | 1.73E-17 | 2.17E-17 | 100 | GWO | 4.79E-09 | 4.03E-05 | 2.72E-04 | 96 | ||
PSO | 1.86E-01 | 3.91E-01 | 1.16E-01 | 0 | PSO | 0 | 3.31E-31 | 3.93E-31 | 100 | ||
SCA | 2.54E+00 | 1.49E+01 | 8.86E+00 | 0 | SCA | 3.53E-05 | 5.09E-03 | 5.01E-03 | 0 | ||
SSA | 3.50E-01 | 4.23E+00 | 3.24E+00 | 0 | SSA | 1.13E-16 | 1.89E-14 | 2.31E-14 | 100 | ||
SOA | 2.12E-04 | 1.09E-02 | 1.73E-02 | 0 | SOA | 1.45E-07 | 1.46E-05 | 2.69E-05 | 60 | ||
WOA | 8.11E-06 | 3.32E+01 | 3.13E+01 | 2 | WOA | 7.88E-13 | 3.55E-07 | 8.35E-07 | 100 | ||
GEO | 5.36E+01 | 6.41E+01 | 3.82E+00 | 0 | GEO | 1.60E-02 | 3.05E+00 | 2.55E+00 | 0 | ||
LRBGEO | 7.74E-12 | 1.40E-11 | 3.54E-12 | 100 | LRBGEO | 0 | 0 | 0 | 100 |
Table 4
Comparison of LRBGEO and improved algorithms test results
函数 | 名称 | 最优值 | 平均值 | 标准差 | SR/% | 函数 | 名称 | 最优值 | 平均值 | 标准差 | SR/% |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | ISOA | 2.10E-72 | 2.62E-67 | 6.86E-67 | 100 | F8 | ISOA | 0 | 0 | 0 | 100 |
RDSSA | 2.44E-53 | 8.31E-52 | 1.62E-51 | 100 | RDSSA | 0 | 0 | 0 | 100 | ||
EIW_PSO | 9.54E-16 | 5.80E-10 | 3.46E-09 | 100 | EIW_PSO | 2.09E+01 | 4.83E+01 | 1.21E+01 | 0 | ||
CASSA | 9.54E-107 | 1.53E-106 | 2.79E-107 | 100 | CASSA | 0 | 0 | 0 | 100 | ||
GEO_DLS | 4.12E-32 | 2.63E-19 | 1.40E-18 | 100 | GEO_DLS | 0 | 2.13E-16 | 1.51E-15 | 100 | ||
LRBGEO | 0 | 0 | 0 | 100 | LRBGEO | 0 | 0 | 0 | 100 | ||
F2 | ISOA | 5.90E-45 | 1.82E-43 | 2.65E-43 | 100 | F9 | ISOA | 8.88E-16 | 1.46E-15 | 1.32E-15 | 100 |
RDSSA | 3.74E-28 | 8.04E-27 | 8.40E-27 | 100 | RDSSA | 8.88E-16 | 8.88E-16 | 0 | 100 | ||
EIW_PSO | 1.81E-07 | 5.42E-04 | 1.16E-03 | 30 | EIW_PSO | 1.93E-08 | 7.55E-02 | 3.08E-01 | 72 | ||
CASSA | 5.04E-53 | 5.72E-53 | 2.44E-54 | 100 | CASSA | 8.88E-16 | 8.88E-16 | 0 | 100 | ||
GEO_DLS | 7.48E-14 | 9.46E-10 | 3.39E-09 | 100 | GEO_DLS | 7.99E-15 | 3.65E-11 | 8.14E-11 | 100 | ||
LRBGEO | 0 | 0 | 0 | 100 | LRBGEO | 8.88E-16 | 8.88E-16 | 0 | 100 | ||
F3 | ISOA | 3.17E-11 | 1.34E-06 | 6.64E-06 | 96 | F10 | ISOA | 0 | 7.73E-03 | 1.17E-02 | 52 |
RDSSA | 9.52E-53 | 6.11E-50 | 3.05E-49 | 100 | RDSSA | 0 | 0 | 0 | 100 | ||
EIW_PSO | 3.92E-02 | 5.07E-01 | 3.83E-01 | 0 | EIW_PSO | 6.66E-16 | 9.75E-03 | 1.10E-02 | 40 | ||
CASSA | 1.68E-104 | 3.46E-104 | 7.55E-105 | 100 | CASSA | 0 | 0 | 0 | 100 | ||
GEO_DLS | 1.64E+02 | 3.40E+04 | 3.58E+04 | 0 | GEO_DLS | 0 | 8.88E-18 | 6.28E-17 | 100 | ||
LRBGEO | 2.06E-21 | 1.50E-20 | 9.11E-21 | 100 | LRBGEO | 0 | 0 | 0 | 100 | ||
F4 | ISOA | 1.32E-13 | 7.43E-11 | 3.70E-10 | 100 | F11 | ISOA | 5.37E-10 | 5.10E-08 | 6.51E-08 | 100 |
RDSSA | 8.93E-29 | 2.04E-27 | 1.72E-27 | 100 | RDSSA | 3.91E-03 | 2.33E-01 | 2.54E-01 | 0 | ||
EIW_PSO | 4.03E-02 | 1.26E-01 | 6.23E-02 | 0 | EIW_PSO | 0 | 2.52E-31 | 3.72E-31 | 100 | ||
CASSA | 3.01E-54 | 4.30E-54 | 6.13E-55 | 100 | CASSA | 7.84E-15 | 3.26E-13 | 3.15E-13 | 100 | ||
GEO_DLS | 2.67E-13 | 7.77E-09 | 1.66E-08 | 100 | GEO_DLS | 6.61E-09 | 4.55E-06 | 1.54E-05 | 96 | ||
LRBGEO | 8.58E-12 | 1.48E-11 | 3.48E-12 | 100 | LRBGEO | 0 | 0 | 0 | 100 | ||
F5 | ISOA | 7.49E-11 | 1.40E-09 | 1.68E-09 | 100 | F12 | ISOA | 1.07E+00 | 1.34E+00 | 1.94E-01 | 0 |
RDSSA | 1.31E-03 | 4.23E-02 | 1.16E-01 | 0 | RDSSA | 9.00E-01 | 9.00E-01 | 2.24E-16 | 100 | ||
EIW_PSO | 0 | 1.82E-02 | 9.00E-02 | 96 | EIW_PSO | 1.00E+00 | 1.00E+00 | 4.91E-09 | 0 | ||
CASSA | 9.81E-17 | 1.22E-14 | 1.02E-14 | 100 | CASSA | 9.00E-01 | 9.00E-01 | 2.24E-16 | 100 | ||
GEO_DLS | 2.59E-10 | 4.28E-07 | 1.67E-06 | 98 | GEO_DLS | 1.44E+00 | 2.09E+00 | 3.24E-01 | 0 | ||
LRBGEO | 0 | 1.37E-31 | 9.61E-31 | 100 | LRBGEO | 9.00E-01 | 9.00E-01 | 2.24E-16 | 100 |
Table 5
Comparison of rank sum test values between LRBGEO and classical basic algorithms
函数 | BOA | FA | GWO | PSO | SCA | SSA | SOA | WOA | GEO |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F2 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F3 | 7.07E-18+ | 7.07E-18+ | 1.02E-02+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ |
F4 | 9.41E-05+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ |
F5 | 6.63E-20+ | 6.63E-20+ | 6.63E-20+ | 0.159 390- | 6.63E-20+ | 6.63E-20+ | 6.63E-20+ | 6.63E-20+ | 6.63E-20+ |
F6 | 3.31E-20+ | 3.31E-20+ | 2.06E-17+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | NAN= | NAN= | 3.31E-20+ |
F7 | 3.31E-20+ | 3.31E-20+ | NAN= | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | NAN= | 3.31E-20+ | 3.31E-20+ |
F8 | 1.82E-03+ | 3.12E-20+ | 0.082 227- | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 1.49E-08+ | NAN= | 3.31E-20+ |
F9 | 3.31E-20+ | 3.31E-20+ | 1.03E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 6.52E-14+ | 3.31E-20+ |
F10 | 5.21E-13+ | 3.31E-20+ | 2.31E-02+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 2.70E-09+ | 0.082 227- | 3.31E-20+ |
F11 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 2.97E-07+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F12 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.98E-12+ | 3.31E-20+ |
F13 | 3.31E-20+ | 3.24E-20+ | 3.31E-20+ | 2.80E-20+ | 3.31E-20+ | 3.27E-20+ | 3.31E-20+ | 3.04E-20+ | 3.31E-20+ |
F14 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 2.32E-15+ | 3.31E-20+ |
+/-/= | 14/0/0 | 14/0/0 | 12/1/1 | 13/1/0 | 14/0/0 | 14/0/0 | 12/0/2 | 11/1/2 | 14/0/0 |
Table 6
Comparison of rank sum test values between LRBGEO and improved algorithms
函数 | ISOA | RDSSA | GEO_DLS | EIW_PSO | CASSA |
---|---|---|---|---|---|
F1 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F2 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F3 | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ | 7.07E-18+ |
F4 | 5.89E-03+ | 7.07E-18+ | 1.34E-12+ | 7.07E-18+ | 7.07E-18+ |
F5 | 6.63E-20+ | 6.63E-20+ | 6.63E-20+ | 0.975 702- | 6.63E-20+ |
F6 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F7 | NAN= | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ |
F8 | NAN= | NAN= | 0.327 086- | 3.31E-20+ | NAN= |
F9 | 3.43E-03+ | NAN= | 3.31E-20+ | 3.31E-20+ | NAN= |
F10 | 3.44E-08+ | NAN= | 0.327 086- | 3.31E-20+ | NAN= |
F11 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 1.44E-05+ | 3.31E-20+ |
F12 | 3.31E-20+ | NAN= | 3.31E-20+ | 3.31E-20+ | NAN= |
F13 | 3.31E-20+ | 3.31E-20+ | 3.31E-20+ | 1.74E-20+ | 3.31E-20+ |
F14 | 3.31E-20+ | NAN= | 3.31E-20+ | 3.31E-20+ | NAN= |
+/-/= | 12/0/2 | 9/0/5 | 12/2/0 | 13/1/0 | 9/0/5 |
Table 9
Comparison of holm follow-up verification results between LRBGEO and classical basic algorithms
i | 算法 | α/i | 是否拒绝 | |
---|---|---|---|---|
1 | WOA | 0.118 649 | 0.050 000 | 否 |
2 | GWO | 0.080 512 | 0.025 000 | 否 |
3 | FA | 0.056 94 | 0.016 667 | 否 |
4 | SOA | 0.012 534 | 0.012 500 | 否 |
5 | BOA | 0.003 028 | 0.010 000 | 是 |
6 | PSO | 0.002 467 | 0.008 333 | 是 |
7 | SSA | 4.300E-05 | 0.007 143 | 是 |
8 | GEO | 2.000E-06 | 0.006 250 | 是 |
9 | SCA | 8.178E-07 | 0.005 556 | 是 |
Table 11
Comparison of results on car side impact design problem
算法 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | 适应度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LRBGEO | 0.624 0 | 1.132 0 | 1.500 0 | 0.843 4 | 0.682 8 | 1.051 9 | 1.382 2 | 0.232 3 | 0.315 2 | 15.247 9 | -5.201 0 | 21.919 5 |
GEO | 0.500 0 | 0.926 6 | 0.916 6 | 0.706 9 | 0.500 0 | 1.195 5 | 1.061 4 | 0.282 1 | 0.345 0 | -6.527 5 | 4.317 4 | 24.467 0 |
SOA | 0.500 0 | 1.009 6 | 1.419 3 | 0.599 4 | 0.500 0 | 1.402 8 | 0.500 0 | 0.199 8 | 0.246 8 | -30.000 0 | -11.441 8 | 25.729 2 |
WOA | 0.500 0 | 1.180 0 | 0.500 0 | 1.476 6 | 0.574 7 | 1.476 6 | 0.500 0 | 0.339 6 | 0.192 0 | -8.806 0 | -22.070 6 | 24.100 0 |
SCA | 0.500 0 | 1.110 5 | 0.790 1 | 1.130 5 | 0.500 0 | 1.500 0 | 0.500 0 | 0.223 4 | 0.345 0 | -29.758 3 | -0.245 8 | 24.140 4 |
GWO | 0.500 4 | 1.113 2 | 0.500 2 | 1.324 1 | 0.500 0 | 1.500 0 | 0.500 0 | 0.344 6 | 0.277 4 | -20.280 8 | 4.510 2 | 22.912 9 |
SSA | 0.500 0 | 1.210 7 | 0.500 0 | 1.241 0 | 1.328 3 | 1.351 1 | 0.500 0 | 0.345 0 | 0.197 6 | -2.687 8 | -6.751 3 | 24.701 3 |
ISOA | 1.075 1 | 0.686 1 | 1.437 8 | 1.500 0 | 0.593 4 | 0.839 6 | 1.395 1 | 0.192 0 | 0.192 0 | 11.349 8 | -5.344 3 | 25.280 0 |
GEO_DLS | 0.500 0 | 1.158 8 | 0.500 4 | 1.448 1 | 0.508 4 | 1.490 0 | 0.500 0 | 0.345 0 | 0.317 8 | -13.273 8 | -13.952 9 | 23.728 9 |
CASSA | 0.500 0 | 1.046 7 | 1.087 1 | 0.652 0 | 0.500 0 | 1.500 0 | 0.500 0 | 0.245 0 | 0.325 4 | -30.000 0 | -4.099 9 | 22.893 9 |
RDSSA | 0.500 0 | 1.245 7 | 0.500 0 | 1.500 0 | 1.312 3 | 1.436 9 | 0.500 0 | 0.192 0 | 0.345 0 | -18.282 4 | 9.940 8 | 25.944 4 |
Table 12
Comparison of results on three-bar truss design problem
算法 | x1 | x2 | 适应度 | 排名 |
---|---|---|---|---|
LRBGEO | 0.790 4 | 0.403 4 | 263.893 7 | 2 |
GEO | 0.768 3 | 0.530 0 | 264.797 3 | 10 |
SOA | 0.825 9 | 0.311 6 | 264.906 3 | 11 |
WOA | 0.810 6 | 0.349 4 | 264.221 1 | 6 |
SCA | 0.802 2 | 0.371 2 | 264.020 7 | 4 |
GWO | 0.792 0 | 0.229 1 | 263.899 7 | 3 |
SSA | 0.806 5 | 0.364 8 | 264.599 7 | 8 |
ISOA | 0.792 0 | 0.397 8 | 264.412 7 | 7 |
GEO_DLS | 0.806 6 | 0.359 7 | 264.119 9 | 5 |
CASSA | 0.788 6 | 0.408 2 | 263.891 5 | 1 |
RDSSA | 0.801 1 | 0.381 5 | 264.739 7 | 9 |
Table 13
Comparison of results on I-beam design problem
算法 | x1 | x2 | x3 | x4 | 适应度 | 排名 |
---|---|---|---|---|---|---|
LRGEO | 10.000 | 61.648 | 3.133 | 5.000 | 0.002 | 1 |
GEO | 48.765 | 64.791 | 1.502 | 4.432 | 0.030 | 11 |
SOA | 20.077 | 34.933 | 0.900 | 5.000 | 0.020 | 10 |
WOA | 30.949 | 22.858 | 4.601 | 4.882 | 0.018 | 8 |
SCA | 30.625 | 29.864 | 1.417 | 4.896 | 0.015 | 7 |
GWO | 10.132 | 21.361 | 1.404 | 2.321 | 0.013 | 6 |
SSA | 19.391 | 35.771 | 4.052 | 0.900 | 0.018 | 9 |
ISOA | 27.396 | 50.920 | 0.900 | 3.988 | 0.005 | 2 |
GEO_DLS | 50.000 | 80.000 | 1.471 | 5.000 | 0.012 | 4 |
CASSA | 24.236 | 66.225 | 5.000 | 5.000 | 0.010 | 3 |
RDSSA | 50.000 | 80.000 | 0.900 | 5.000 | 0.012 | 5 |
1 | Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942-1948. |
2 | 侯天天, 张守京, 杜昊天. 考虑工人学习效应的双资源约束柔性车间调度[J]. 组合机床与自动化加工技术, 2022(12): 164-168. |
Hou Tiantian, Zhang Shoujing, Du Haotian. Research on Dual-resource Constrained Flexible Job Shop Scheduling Problem Considering Workers' Learning Effect[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(12): 164-168. | |
3 | 陈明强, 李奇峰, 冯树娟, 等. 基于改进粒子群算法的无人机三维航迹规划[J]. 无线电工程, 2023, 53(2): 394-400. |
Chen Mingqiang, Li Qifeng, Feng Shujuan, et al. Three-dimensional Trajectory Planning of UAV Based on Improved Particle Swarm Optimization Algorithm[J]. Radio Engineering, 2023, 53(2): 394-400. | |
4 | 王赫, 曹毅, 李玉, 等. 基于改进粒子群算法的平房仓粮温BP神经网络预测模型建立[J/OL]. 中国粮油学报: 1-10[2022-12-17]. . |
Wang He, Cao Yi, Li Yu, et al. Prediction Model of Grain Temperature in Warehouse Based on Improved Particle Swarm Optimization BP Neural Network[J/OL]. Journal of the Chinese Cereals and Oils Association: 1-10[2022-12-17]. . | |
5 | Arora S, Singh S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization[J]. Soft Computing, 2019, 23(3): 715-734. |
6 | Yang Xinshe. Firefly Algorithms for Multimodal Optimization[C]//Stochastic Algorithms: Foundations and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 169-178. |
7 | Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
8 | Mirjalili S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems[J]. Knowledge-based Systems, 2016, 96: 120-133. |
9 | Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software, 2017, 114: 163-191. |
10 | Dhiman G, Kumar V. Seagull Optimization Algorithm: Theory and Its Applications for Large-scale Industrial Engineering Problems[J]. Knowledge-based Systems, 2019, 165: 169-196. |
11 | Mirjalili S, Lewis A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
12 | 刘军梅. 新型混沌粒子群混合优化算法[J]. 软件导刊, 2017, 16(2): 59-62. |
Liu Junmei. New Chaotic Particle Swarm Hybrid Optimization Algorithm[J]. SoftWare Guide, 2017, 16(2): 59-62. | |
13 | 刘杨, 田学锋, 詹志辉. 粒子群优化算法惯量权重控制方法的研究[J]. 南京大学学报(自然科学版), 2011, 47(4): 364-371. |
Liu Yang, Tian Xuefeng, Zhan Zhihui. Research on Inertia Weight Control Approaches in Particle Swarm Optimization[J]. Journal of Nanjing University(Natural Sciences), 2011, 47(4): 364-371. | |
14 | 秦维娜, 张达敏, 尹德鑫, 等. 一种基于非线性惯性权重的海鸥优化算法[J]. 小型微型计算机系统, 2022, 43(1): 10-14. |
Qin Weina, Zhang Damin, Yin Dexin, et al. Seagull Optimization Algorithm Based on Nonlinear Inertia Weight[J]. Journal of Chinese Computer Systems, 2022, 43(1): 10-14. | |
15 | 王义, 张达敏, 邹诚诚. 增强全局搜索和自适应蜉蝣算法[J]. 哈尔滨工业大学学报, 2022, 54(11): 137-150. |
Wang Yi, Zhang Damin, Zou Chengcheng. Enhance Global Search and Adaptive Mayfly Algorithm[J]. Journal of Harbin Institute of Technology, 2022, 54(11): 137-150. | |
16 | 葛育晓, 赵荣珍. 基于改进SOA算法自整定PID系统优化研究[J]. 仪表技术与传感器, 2020(10): 108-113, 116. |
Ge Yuxiao, Zhao Rongzhen. Research on Self-tuning PID System Optimization Based on Improved Seeker Optimization Algorithm[J]. Instrument Technique and Sensor, 2020(10): 108-113, 116. | |
17 | 董红斌, 李冬锦, 张小平. 一种动态调整惯性权重的粒子群优化算法[J]. 计算机科学, 2018, 45(2): 98-102, 139. |
Dong Hongbin, Li Dongjin, Zhang Xiaoping. Particle Swarm Optimization Algorithm with Dynamically Adjusting Inertia Weight[J]. Computer Science, 2018, 45(2): 98-102, 139. | |
18 | Humphries N E, Queiroz N, Dyer J R M, et al. Environmental Context Explains Lévy and Brownian Movement Patterns of Marine Predators[J]. Nature, 2010, 465(7301): 1066-1069. |
19 | Yang Xinshe, Deb S. Multiobjective Cuckoo Search for Design Optimization[J]. Computers & Operations Research, 2013, 40(6): 1616-1624. |
20 | 于建芳, 刘升, 王俊杰, 等. 融合莱维飞行与黄金正弦的蚁狮优化算法[J]. 计算机应用研究, 2020, 37(8): 2349-2353. |
Yu Jianfang, Liu Sheng, Wang Junjie, et al. Ant Lion Optimization Algorithm Integrating with Lévy Flight and Golden Sine[J]. Application Research of Computers, 2020, 37(8): 2349-2353. | |
21 | Mohammadi-Balani A, Dehghan Nayeri M, Azar A, et al. Golden Eagle Optimizer: A Nature-inspired Metaheuristic Algorithm[J]. Computers & Industrial Engineering, 2021, 152: 107050. |
22 | Pan J S, Jixiang Lü, Yan Lijun, et al. Golden Eagle Optimizer with Double Learning Strategies for 3D Path Planning of UAV in Power Inspection[J]. Mathematics and Computers in Simulation, 2022, 193: 509-532. |
23 | Eluri R K, Devarakonda N. Binary Golden Eagle Optimizer with Time-varying Flight Length for Feature Selection[J]. Knowledge-Based Systems, 2022, 247: 108771. |
24 | Magesh T, Devi G, Lakshmanan T. Improving the Performance of Grid Connected Wind Generator with a PI Control Scheme Based on the Metaheuristic Golden Eagle Optimization Algorithm[J]. Electric Power Systems Research, 2023, 214, Part B: 108944. |
25 | Bartumeus F, Catalan J, Fulco U L, et al. Optimizing the Encounter Rate in Biological Interactions: Lévy Versus Brownian Strategies[J]. Physical Review Letters, 2002, 88(9): 097901. |
26 | 陈雷, 蔺悦, 康志龙. 基于衰减因子和动态学习的改进樽海鞘群算法[J]. 控制理论与应用, 2020, 37(8): 1766-1780. |
Chen Lei, Lin Yue, Kang Zhilong. Improved Salp Swarm Algorithm Based on Reduction Factor and Dynamic Learning[J]. Control Theory & Applications, 2020, 37(8): 1766-1780. | |
27 | 张达敏, 陈忠云, 辛梓芸, 等. 基于疯狂自适应的樽海鞘群算法[J]. 控制与决策, 2020, 35(9): 2112-2120. |
Zhang Damin, Chen Zhongyun, Xin Ziyun, et al. Salp Swarm Algorithm Based on Craziness and Adaptive[J]. Control and Decision, 2020, 35(9): 2112-2120. | |
28 | Saha A K. Multi-population-based Adaptive Sine Cosine Algorithm with Modified Mutualism Strategy for Global Optimization[J]. Knowledge-Based Systems, 2022, 251: 109326. |
[1] | Jiaying Yu, Hongli Zhang, Yingchao Dong. Research on No-Wait Flow Shop Scheduling Based on Discrete State Transition Algorithm [J]. Journal of System Simulation, 2023, 35(5): 1034-1045. |
[2] | Yefeng Jiao, Yan Wang, Zhicheng Ji. Short-term Prediction Method of Wind Power Based on BLP-ALO-SVM [J]. Journal of System Simulation, 2022, 34(12): 2535-2545. |
[3] | Han Zhonghua, Liu Yuehan, Li Man, Sun Liangliang, Zheng Hongzhi. Improved Wolf Pack Algorithm for Distribution of Molds on Molds Table [J]. Journal of System Simulation, 2021, 33(1): 127-140. |
[4] | Liu Jingsen, Liu Xiaozhen, Li Yu. Cuckoo Search Algorithm with Dynamic Step and Discovery Probability [J]. Journal of System Simulation, 2020, 32(2): 289-298. |
[5] | Chen Jinbao, Li Jie, Wang Yan, Ji Zhicheng. PMSM Parameter Identification Using Teaching-Learning-Based Optimization with Levy Flight [J]. Journal of System Simulation, 2018, 30(4): 1456-1463. |
[6] | Zhang Xin, Li Ke, Yan Dahu, Ji Zhicheng. Improved Intrusion Weed Algorithm for Solving Flexible Job Shop Scheduling Problem [J]. Journal of System Simulation, 2018, 30(11): 4469-4476. |
[7] | He Huanhuan, Wang Xingwei, Huang Min. Evolutionary Game-based Spectrum Sharing Scheme in Cognitive Radio Network [J]. Journal of System Simulation, 2016, 28(3): 756-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||