Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (3): 775-790.doi: 10.16182/j.issn1004731x.joss.23-1402
• Papers • Previous Articles
Jiang Lun1, Wang Dajiang2, Sun Wenlei1, Bao Shenghui1, Liu Han1, Chang Saike1
Received:
2023-11-17
Revised:
2023-12-20
Online:
2025-03-17
Published:
2025-03-21
Contact:
Sun Wenlei
CLC Number:
Jiang Lun, Wang Dajiang, Sun Wenlei, Bao Shenghui, Liu Han, Chang Saike. Research on Transformer Fault Diagnosis Method Based on Digital Twin[J]. Journal of System Simulation, 2025, 37(3): 775-790.
Table 1
Air Thermophysical Properties
T/℃ | К | ||||
---|---|---|---|---|---|
-30 | 1.450 | 2.20×10-2 | 14.9×10-6 | 10.80×10-6 | 0.723 |
-20 | 1.395 | 2.28×10-2 | 16.2×10-6 | 11.62×10-6 | 0.716 |
-10 | 1.342 | 2.35×10-2 | 17.4×10-6 | 12.45×10-6 | 0.710 |
0 | 1.293 | 2.44×10-2 | 18.8×10-6 | 13.28×10-6 | 0.708 |
10 | 1.247 | 2.50×10-2 | 20.0×10-6 | 14.15×10-6 | 0.706 |
20 | 1.206 | 2.57×10-2 | 21.3×10-6 | 15.07×10-6 | 0.704 |
30 | 1.165 | 2.64×10-2 | 22.9×10-6 | 16.00×10-6 | 0.702 |
40 | 1.127 | 2.76×10-2 | 24.3×10-6 | 16.96×10-6 | 0.699 |
1 | Grieves M W. Product Lifecycle Management: The New Paradigm for Enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71-84. |
2 | Grieves M, Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]//Franz Josef Kahlen, Flumerfelt S, Anabela Alves. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Cham: Springer International Publishing, 2017: 85-113. |
3 | 石运东, 王爽, 程浩峰, 等. 一种易维护变压器呼吸器的方案设计[J]. 变压器, 2023, 60(2): 6-9. |
Shi Yundong, Wang Shuang, Cheng Haofeng, et al. Development and Application of a Transformer Respirator Easy to Maintain[J]. Transformer, 2023, 60(2): 6-9. | |
4 | Morais D R, Rolim J G. A Hybrid Tool for Detection of Incipient Faults in Transformers Based on the Dissolved Gas Analysis of Insulating Oil[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 673-680. |
5 | Fan Jingmin, Wang Feng, Sun Qiuqin, et al. Hybrid RVM-ANFIS Algorithm for Transformer Fault Diagnosis[J]. IET Generation Transmission & Distribution, 2017, 11(14): 3637-3643. |
6 | Hazlee Azil Illias, Chai Xinrui, Ab Halim Abu Bakar. Hybrid Modified Evolutionary Particle Swarm Optimisation-time Varying Acceleration Coefficient-artificial Neural Network for Power Transformer Fault Diagnosis[J]. Measurement, 2016, 90: 94-102. |
7 | Huang Xinyi, Huang Xiaoli, Wang Binrong, et al. Fault Diagnosis of Transformer Based on Modified Grey Wolf Optimization Algorithm and Support Vector Machine[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(3): 409-417. |
8 | Teng Wenhui, Fan Shuxian, Gong Zheng, et al. Fault Diagnosis of Transformer Based on Fuzzy Clustering and the Optimized Wavelet Neural Network[J]. Systems Science & Control Engineering, 2018, 6(3): 359-363. |
9 | Rao Shaowei, Zou Guoping, Yang Shiyou, et al. Fault Diagnosis of Power Transformers Using ANN and SMOTE Algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 2022, 70(4): 345-355. |
10 | Hu Qin, Mo Jiaqing, Ruan Saisai, et al. Fault Diagnosis of Oil-immersed Power Transformers Using SVM and Logarithmic Arctangent Transform[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17(11): 1562-1569. |
11 | Ji Xingquan, Zhang Yuzhen, Liu Qi. Insulation Condition Assessment of Power Transformers Employing Fused Information in Time and Space Dimensions[J]. Electric Power Components and Systems, 2020, 48(1/2): 213-223. |
12 | Musliyarakath Aneesa Farhan, Shanti Swarup K. Mathematical Morphology-based Islanding Detection for Distributed Generation[J]. IET Generation, Transmission & Distribution, 2017, 11(14): 3449-3457. |
13 | Zhang Delong, Ye Zhijun, Chen Huipeng, et al. Research on Digital Twin Model and Visualization of Power Transformer[C]//2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway: IEEE, 2021: 1-5. |
14 | Gao Zhengzhong, Yin Xiucheng, Zhao Fanzhe, et al. A Two-layer SSA-XGBoost-MLR Continuous Multi-day Peak Load Forecasting Method Based on Hybrid Aggregated Two-phase Decomposition[J]. Energy Reports, 2022, 8: 12426-12441. |
15 | Wu Chao, Lin Junlian, Yu Zongchao, et al. Thermal State Prediction of Transformers Based on ISSA-LSTM[C]//2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE). Piscataway: IEEE, 2022: 160-165. |
16 | Rommel D P, Di Maio D. Transformer Hot Spot Temperature Prediction Based on Basic Operator Information[J]. International Journal of Electrical Power & Energy Systems, 2021, 124: 106340. |
17 | Xu Dapeng, Mao Yu, Yang Xiaohui, et al. Analysis of Winding Temperature Field Under Dynamic Variable Load of Oil-immersed Transformer[J]. Thermal Science, 2021, 25(4 Part B): 3009-3019. |
18 | 张永超. 基于数字孪生技术的变压器温度预测及热寿命损失分析[D]. 沈阳: 沈阳工业大学, 2022. |
Zhang Yongchao. Transformer Temperature Prediction and Thermal Life Loss Analysis Based on Digital Twin Technology[D]. Shenyang: Shenyang University of Technology, 2022. | |
19 | Zhu Shenglong, Qin Shaorui, Li Jianlin, et al. Steady-state Simulation on Temperature and Flow Fields of ONAF Transformer[C]//2021 3rd International Conference on Smart Power & Internet Energy Systems (SPIES). Piscataway: IEEE, 2021: 143-146. |
20 | 鲁非, 王圣康, 李浩波, 等. 对流—辐射边界对变压器温度场影响的解耦研究[J]. 高压电器, 2022, 58(11): 17-23, 30. |
Lu Fei, Wang Shengkang, Li Haobo, et al. Decoupling Study on Influence of Convective-radiation Boundary on Transformer Temperature Field[J]. High Voltage Apparatus, 2022, 58(11): 17-23, 30. | |
21 | 张又文, 冯斌, 陈页, 等. 基于遗传算法优化XGBoost的油浸式变压器故障诊断方法[J]. 电力自动化设备, 2021, 41(2): 200-206. |
Zhang Youwen, Feng Bin, Chen Ye, et al. Fault Diagnosis Method for Oil-immersed Transformer Based on XGBoost Optimized by Genetic Algorithm[J]. Electric Power Automation Equipment, 2021, 41(2): 200-206. | |
22 | Julio Cesar Guimarães, Daniel Flores Cortez, Alceu André Badin. Single-phase Hybrid Switched-capacitor Interleaved AC-DC Boost Converter[J]. IEEE Access, 2021, 9: 140799-140808. |
23 | 唐炬, 王存超, 陈娇, 等. 变压器局部放电的泰勒遗传综合定位法[J]. 电工技术学报, 2010, 25(7): 165-171. |
Tang Ju, Wang Cunchao, Chen Jiao, et al. Taylor-genetic Algorithm Using for PD Location in Power Transformer[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 165-171. | |
24 | 王伟, 唐庆华, 刘力卿, 等. 基于加权综合损失优化深度学习和DGA的变压器故障诊断方法[J]. 南方电网技术, 2020, 14(3): 29-34. |
Wang Wei, Tang Qinghua, Liu Liqing, et al. Transformer Fault Diagnosis Method Based on Weighted Comprehensive Loss Optimization Deep Learning and DGA[J]. Southern Power System Technology, 2020, 14(3): 29-34. | |
25 | 何庆, 林杰, 徐航. 混合柯西变异和均匀分布的蝗虫优化算法[J]. 控制与决策, 2021, 36(7): 1558-1568. |
He Qing, Lin Jie, Xu Hang. Hybrid Cauchy Mutation and Uniform Distribution of Grasshopper Optimization Algorithm[J]. Control and Decision, 2021, 36(7): 1558-1568. | |
26 | 王雨虹, 王志中. 基于RFRFE与ISSA-XGBoost的变压器故障辨识方法[J]. 电子测量与仪器学报, 2021, 35(12): 142-150. |
Wang Yuhong, Wang Zhizhong. Transformer Fault Identification Method Based on RFRFE and ISSA-XGBoost[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(12): 142-150. | |
27 | 廖才波, 阮江军, 刘超, 等. 油浸式变压器三维电磁-流体-温度场耦合分析方法[J]. 电力自动化设备, 2015, 35(9): 150-155. |
Liao Caibo, Ruan Jiangjun, Liu Chao, et al. Comprehensive Analysis of 3-D Electromagnetic-fluid-thermal Fields of Oil-immersed Transformer[J]. Electric Power Automation Equipment, 2015, 35(9): 150-155. |
[1] | Li Dongxue, Liu Yan, Shen Boyao, Jing Yongteng, Ma Qiang, Liu Ran. Carbon Footprint Analysis and Low-carbon Optimization Method Simulation Study of Power Transformer Based on Digital Twin Technology [J]. Journal of System Simulation, 2024, 36(9): 2075-2085. |
[2] | Liu Peijin, Fu Xuefeng, Sun Haofeng, He Lin, Liu Shujie. A Highly Robust Target Tracking Algorithm Merging CNN and Transformer [J]. Journal of System Simulation, 2024, 36(8): 1854-1868. |
[3] | Ren Qiankun, Xiong Xinli, Liu Jingju, Yao Qian. Reserach on Digital Twins Technology in Cyberspace Security [J]. Journal of System Simulation, 2024, 36(8): 1944-1957. |
[4] | Li Xiang, Sang Haifeng. Dense Video Description Method Based on Multi-modal Fusion in Transformer Network [J]. Journal of System Simulation, 2024, 36(5): 1061-1071. |
[5] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
[6] | Xu Zhongkai, Liu Yanling, Sheng Xiaojuan, Wang Chao, Ke Wenjun. Automatic Detection Algorithm for Typical Defects of Substation Based on Improved YOLOv5 [J]. Journal of System Simulation, 2024, 36(11): 2604-2615. |
[7] | Yuan Biao, Huang Yourui, Xu Shanyong, Rong Xue. Construction and Application of Digital Twin System for Optical Fiber Secondary Coating Workshop [J]. Journal of System Simulation, 2023, 35(9): 2011-2022. |
[8] | Fei Ding, Meinan Zhang, Hengheng Zhuang, Hairong Ma, Dengyin Zhang. Target Search Planning and Algorithm for Monitoring of Polar Disaster Areas [J]. Journal of System Simulation, 2023, 35(7): 1526-1538. |
[9] | Zhang Wenfeng, Zhu Zhichao, Wu Dinghui. Rolling Bearing Fault Diagnosis Based on Weighted Domain Adaptive Convolutional Neural Network [J]. Journal of System Simulation, 2023, 35(11): 2445-2453. |
[10] | Jiarui Liu, Guotian Yang, Xiaowei Wang. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network [J]. Journal of System Simulation, 2022, 34(11): 2348-2358. |
[11] | Xuqiang Shao, Haowei Zhang, Xiaohua Feng. Multi-sensory Fusion Method for Power Transformer Virtual Assembly [J]. Journal of System Simulation, 2022, 34(10): 2244-2254. |
[12] | Zhu Zhichao, Wu Dinghui, Yue Yuanchang. Engine Wear Fault Diagnosis Based on Supervised Kernel Entropy Component Analysis [J]. Journal of System Simulation, 2022, 34(1): 45-52. |
[13] | Li Yuan, Geng Zewei. Fault Diagnosis of Industrial Process Based on LLE and K-means Clustering Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2066-2073. |
[14] | Wang Yinsong, Sun Tianshu. Actuator Fault Status Evaluation Based on Two-Class NMF Network [J]. Journal of System Simulation, 2021, 33(8): 1882-1891. |
[15] | Wei Jingjing, Liu Qinming, Ye Chunming, Li Guanlin. Fault Diagnosis of Mechanical Equipment Based on GA-SVR with Missing Data in Small Samples [J]. Journal of System Simulation, 2021, 33(6): 1342-1349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||