Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (11): 2604-2615.doi: 10.16182/j.issn1004731x.joss.23-0914
Xu Zhongkai1, Liu Yanling2, Sheng Xiaojuan3, Wang Chao1, Ke Wenjun4
Received:
2023-07-20
Revised:
2023-11-06
Online:
2024-11-13
Published:
2024-11-19
CLC Number:
Xu Zhongkai, Liu Yanling, Sheng Xiaojuan, Wang Chao, Ke Wenjun. Automatic Detection Algorithm for Typical Defects of Substation Based on Improved YOLOv5[J]. Journal of System Simulation, 2024, 36(11): 2604-2615.
Table 4
Comparison of recognition effects of proposed method and baseline model
类别 | 基线模型 | 本文方法 | ||
---|---|---|---|---|
精确率 | 召回率 | 精确率 | 召回率 | |
整体效果 | 0.761 | 0.718 | 0.782 | 0.781 |
表盘模糊 | 0.843 | 0.825 | 0.839 | 0.828 |
表盘破损 | 0.790 | 0.712 | 0.864 | 0.709 |
地面油污 | 0.547 | 0.406 | 0.645 | 0.648 |
硅胶变色 | 0.852 | 0.879 | 0.813 | 0.894 |
硅胶筒破损 | 0.794 | 0.481 | 0.907 | 0.863 |
绝缘子破裂 | 0.716 | 0.520 | 0.749 | 0.752 |
箱门闭合异常 | 0.841 | 0.699 | 0.746 | 0.734 |
挂空悬浮物 | 0.846 | 0.736 | 0.806 | 0.779 |
鸟巢 | 0.813 | 0.742 | 0.761 | 0.734 |
未穿安全帽 | 0.901 | 0.861 | 0.913 | 0.826 |
1 | 李锋, 谢俊, 兰金波, 等. 智能变电站继电保护配置的展望和探讨[J]. 电力自动化设备, 2012, 32(2): 122-126. |
Li Feng, Xie Jun, Lan Jinbo, et al. Prospect and Discussion of Relay System Configuration for Intelligent Substation[J]. Electric Power Automation Equipment, 2012, 32(2): 122-126. | |
2 | 司文荣, 傅晨钊, 卞晓亮, 等. 变电站接地网缺陷诊断无损评价方法综述[J]. 电气工程学报, 2015, 10(8): 14-21. |
Si Wenrong, Fu Chenzhao, Bian Xiaoliang, et al. Overview of the Nondestructive Evaluation Methods for Substation Grounding Grids Fault Diagnosis[J]. Journal of Electrical Engineering, 2015, 10(8): 14-21. | |
3 | 杨凯, 李锐, 罗林, 等. 基于深度学习的车轮踏面表面缺陷检测研究[J]. 信息技术, 2021, 45(7): 93-97. |
Yang Kai, Li Rui, Luo Lin, et al. Research on Wheel Tread Surface Defect Detection Based on Deep Learning[J]. Information Technology, 2021, 45(7): 93-97. | |
4 | 王慧玲, 綦小龙, 武港山. 基于深度卷积神经网络的目标检测技术的研究进展[J]. 计算机科学, 2018, 45(9): 11-19. |
Wang Huiling, Qi Xiaolong, Wu Gangshan. Research Progress of Object Detection Technology Based on Convolutional Neural Network in Deep Learning[J]. Computer Science, 2018, 45(9): 11-19. | |
5 | 李琳. 低光照图像目标检测关键技术研究[D]. 合肥: 合肥工业大学, 2021. |
Li Lin. Research on Key Technology of Low Illumination Image Object Detection[D]. Hefei: Hefei University of Technology, 2021. | |
6 | Syed Sahil Abbas Zaidi, Ansari M S, Aslam Asra, et al. A Survey of Modern Deep Learning Based Object Detection Models[J]. Digital Signal Processing, 2022, 126: 103514. |
7 | Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788. |
8 | Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 6517-6525. |
9 | Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[EB/OL]. (2018-04-08) [2023-01-08]. . |
10 | Bochkovskiy A, Wang C Y, Liao Hongyuan. YOLOv4: Optimal Speed and Accuracy of Object Detection[EB/OL]. (2020-04-23) [2023-01-15]. . |
11 | 褚文杰. 基于YOLOv5的坦克装甲车辆目标检测关键技术的研究[D]. 北京: 北京交通大学, 2021. |
Chu Wenjie. Research on the Key Technology of Tank and Armored Vehicle Target Detection Based on YOLOv5[D]. Beijing: Beijing Jiaotong University, 2021. | |
12 | Ultralytics. Ultralytics Yolov5[EB/OL]. [2022-06-01]. . |
13 | 赵文清, 康怿瑾, 赵振兵, 等. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95. |
Zhao Wenqing, Kang Yijin, Zhao Zhenbing, et al. A Remote Sensing Image Object Detection Algorithm with Improved YOLOv5s[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 86-95. | |
14 | 张云佐, 郭威, 蔡昭权, 等. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223. |
Zhang Yunzuo, Guo Wei, Cai Zhaoquan, et al. Remote Sensing Image Target Detection Combining Multi-scale and Attention Mechanism[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(11): 2215-2223. | |
15 | 张锦, 屈佩琪, 孙程, 等. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用, 2022, 42(4): 1292-1300. |
Zhang Jin, Qu Peiqi, Sun Cheng, et al. Safety Helmet Wearing Detection Algorithm Based on Improved YOLOv5[J]. Journal of Computer Applications, 2022, 42(4): 1292-1300. | |
16 | 李文举, 张干, 崔柳, 等. 基于坐标注意力的轻量级交通标志识别模型[J]. 计算机应用, 2023, 43(2): 608-614. |
Li Wenju, Zhang Gan, Cui Liu, et al. Lightweight Traffic Sign Recognition Model Based on Coordinate Attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614. | |
17 | 刘晓倩, 李士心, 李保胜, 等. 基于改进YOLOv5的交通标志检测算法研究[J]. 计算机科学与应用, 2022, 12(9): 2161-2168. |
Liu Xiaoqian, Li Shixin, Li Baosheng, et al. Research on Traffic Sign Detection Algorithm Based on Improved YOLOv5[J]. Computer Science and Application, 2022, 12(9): 2161-2168. | |
18 | 程松, 杨洪刚, 徐学谦, 等. 基于YOLOv5的改进轻量型X射线铝合金焊缝缺陷检测算法[J]. 中国激光, 2022, 49(21): 130-138. |
Cheng Song, Yang Honggang, Xu Xueqian, et al. Improved Lightweight X-Ray Aluminum Alloy Weld Defects Detection Algorithm Based on YOLOv5[J]. Chinese Journal of Lasers, 2022, 49(21): 130-138. | |
19 | 张宇杰, 蔡乐才, 成奎, 等. 改进YOLOv5金属表面缺陷检测方法[J]. 四川轻化工大学学报(自然科学版), 2022, 35(4): 32-41. |
Zhang Yujie, Cai Lecai, Cheng Kui, et al. An lmproved YOLOv5 Method for the Detection of Metal Surface Defects[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition), 2022, 35(4): 32-41. | |
20 | 陈婷, 周旻, 韩勤, 等. 基于改进YOLOv4的变电站缺陷检测[J]. 计算机系统应用, 2022, 31(6): 245-251. |
Chen Ting, Zhou Min, Han Qin, et al. Defect Detection for Substation Based on Improved YOLOv4[J]. Computer Systems & Applications, 2022, 31(6): 245-251. | |
21 | 罗箫瑜, 张志. 基于改进YOLOX的变电站设备缺陷检测方法[J]. 吉林大学学报(信息科学版), 2023, 41(5): 848-857. |
Luo Xiaoyu, Zhang Zhi. Defect Detection for Substation Based on Improved YOLOX[J]. Journal of Jilin University(Information Science Edition), 2023, 41(5): 848-857. | |
22 | 伍艺佳, 华雄, 王丽蓉, 等. 基于注意力机制学习的变电设备缺陷检测方法[J]. 计算机与现代化, 2021(2): 7-12, 17. |
Wu Yijia, Hua Xiong, Wang Lirong, et al. Method of Substation Equipment Defect Detection Based on Attention Mechanism Learning[J]. Computer and Modernization, 2021(2): 7-12, 17. | |
23 | 谢政峰. 基于深度学习的新材料地板缺陷检测技术研究[D]. 成都: 四川大学, 2021. |
Xie Zhengfeng. Research on Defect Detection Technology of New Material Flooring Based on Deep Leaning[D]. Chengdu: Sichuan University, 2021. | |
24 | 谷玉海, 曹梦婷, 修嘉芸, 等. 基于YOLOv4网络的违章行为检测算法[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 114-121. |
Gu Yuhai, Cao Mengting, Xiu Jiayun, et al. Algorithm for Detecting Violations Based on YOLOv4 Network[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(8): 114-121. | |
25 | Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
26 | Devlin J, Chang Mingwei, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. |
27 | Radford A, Narasimhan K, Salimans T, et al. Improving Language Understanding by Generative Pre-training[EB/OL]. [2023-02-01]. . |
28 | Peters M E, Neumann M, Iyyer M, et al. Deep Contextualized Word Representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 2227-2237. |
29 | 侯丽微, 胡珀, 曹雯琳. 主题关键词信息融合的中文生成式自动摘要研究[J]. 自动化学报, 2019, 45(3): 530-539. |
Hou Liwei, Hu Po, Cao Wenlin. Automatic Chinese Abstractive Summarization with Topical Keywords Fusion[J]. Acta Automatica Sinica, 2019, 45(3): 530-539. | |
30 | 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16. |
Liu Wenting, Lu Xinming. Research Progress of Transformer Based on Computer Vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16. | |
31 | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16×16 Words:Transformers for Image Recognition at Scale[C]//ICLR 2021. New York: ICIR, 2021: 1-22. |
32 | Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007. |
33 | Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755. |
[1] | Li Dongxue, Liu Yan, Shen Boyao, Jing Yongteng, Ma Qiang, Liu Ran. Carbon Footprint Analysis and Low-carbon Optimization Method Simulation Study of Power Transformer Based on Digital Twin Technology [J]. Journal of System Simulation, 2024, 36(9): 2075-2085. |
[2] | Liu Peijin, Fu Xuefeng, Sun Haofeng, He Lin, Liu Shujie. A Highly Robust Target Tracking Algorithm Merging CNN and Transformer [J]. Journal of System Simulation, 2024, 36(8): 1854-1868. |
[3] | Li Xiang, Sang Haifeng. Dense Video Description Method Based on Multi-modal Fusion in Transformer Network [J]. Journal of System Simulation, 2024, 36(5): 1061-1071. |
[4] | Wang Gaihua, Li Kehong, Long Qian, Yao Jingxuan, Zhu Bolun, Zhou Zhengshu, Pan Xuran. Object Detection of Lightweight Transformer Based on Knowledge Distillation [J]. Journal of System Simulation, 2024, 36(11): 2517-2527. |
[5] | Su Tong, Wang Ying, Deng Qiyang, Li Zhaobin. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5 [J]. Journal of System Simulation, 2024, 36(10): 2413-2422. |
[6] | Shugang Liu, Linkun Zhang, Haodong Du, Hongtao Wang. Improved Object Detection of YOLOv4 in Foggy Conditions [J]. Journal of System Simulation, 2023, 35(8): 1681-1691. |
[7] | Ying Xu, Shuai Zhang, Zhige Xie, Xinhai Xu, Manhui Sun, Ning Guo. A Simulation Method of Airborne Radar Real-time Detection Based on Three-dimensional Subdivision [J]. Journal of System Simulation, 2023, 35(2): 268-276. |
[8] | Xuqiang Shao, Haowei Zhang, Xiaohua Feng. Multi-sensory Fusion Method for Power Transformer Virtual Assembly [J]. Journal of System Simulation, 2022, 34(10): 2244-2254. |
[9] | Bi Zhenbo, Zhang Shiyou, Yang Hua, Wu Yuanhong. Survey of Ship Detection in Video Surveillance Based on Shallow Machine Learning [J]. Journal of System Simulation, 2021, 33(12): 2792-2807. |
[10] | Shi Min, Yao Hanqin, Li Chunpeng, Chen Liangchen. Foot Measurement Based on Deep Alignment Network [J]. Journal of System Simulation, 2020, 32(7): 1267-1278. |
[11] | Zheng Yanyan, Zhu Yongli, Liu Tongtong, Su Shanshan. Single-Phase Grounding Fault Location in Wind Farm Based on Zero-Sequence Current [J]. Journal of System Simulation, 2019, 31(7): 1408-1415. |
[12] | Tang Yongbo, Xiong Yinguo. Transformer Fault Diagnosis Based on Feature Extraction of Relative Transformation Principal Component Analysis [J]. Journal of System Simulation, 2018, 30(3): 1127-1134. |
[13] | Zhang Yanguo, Li Qing. Multi-frame Fusion Method for Point Cloud of LiDAR Based on IMU [J]. Journal of System Simulation, 2018, 30(11): 4334-4339. |
[14] | Lü Fangcheng, Guo Yunxiang, Li Peng. Optimal Design of High Power Medium Frequency Transformer Based on Channel Lightweight Requirement [J]. Journal of System Simulation, 2017, 29(1): 154-161. |
[15] | Wang Yongqiang, Zheng Zhihong, Ouyang Baolong, Li Jianfang. Calculation of Transformer Core Loss Based on Finite Element Coupling Algorithm [J]. Journal of System Simulation, 2016, 28(8): 1757-1763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||