Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 529-540.doi: 10.16182/j.issn1004731x.joss.23-1571
• Papers • Previous Articles
Zhang Peng, Feng Ke, Gong Jiancheng, Yang Xiaoqiang, Shen Jinxing
Received:
2023-12-25
Revised:
2024-01-10
Online:
2025-02-14
Published:
2025-02-10
Contact:
Feng Ke
CLC Number:
Zhang Peng, Feng Ke, Gong Jiancheng, Yang Xiaoqiang, Shen Jinxing. Combat Effectiveness Evaluation of Air Defense Missile Weapon System Based on RBF Neural Network[J]. Journal of System Simulation, 2025, 37(2): 529-540.
Table 1
Partial performance parameters table of air defense missile weapon system
性能指标 | 序号 | |||||||
---|---|---|---|---|---|---|---|---|
4 | 51 | 126 | 220 | 239 | 400 | 467 | 593 | |
雷达发现概率 | 0.978 | 0.539 | 0.213 | 0.271 | 0.406 | 0.779 | 0.373 | 0.516 |
雷达识别概率 | 0.730 | 0.881 | 0.831 | 0.779 | 0.795 | 0.661 | 0.791 | 0.709 |
雷达制导概率 | 0.910 | 0.872 | 0.911 | 0.782 | 0.839 | 0.986 | 0.808 | 0.900 |
最大探测距离 | 0.985 | 0.741 | 0.808 | 0.936 | 0.841 | 0.920 | 0.736 | 0.783 |
地形遮蔽 | 0.481 | 0.663 | 0.473 | 0.078 | 0.527 | 0.744 | 0.321 | 0.661 |
信道容量 | 0.930 | 0.616 | 0.897 | 0.602 | 0.850 | 0.965 | 1.241 | 0.967 |
信息处理延时 | 0.646 | 1.146 | 0.721 | 0.935 | 0.945 | 0.968 | 0.982 | 0.827 |
战场态势评估能力 | 0.995 | 0.833 | 0.809 | 0.944 | 0.969 | 0.983 | 0.807 | 0.881 |
辅助决策能力 | 0.847 | 0.829 | 0.708 | 0.884 | 0.656 | 0.862 | 0.151 | 0.377 |
决策响应时间 | 1.118 | 0.692 | 1.047 | 0.880 | 0.459 | 1.214 | 0.630 | 1.071 |
武器反应时间 | 0.500 | 0.856 | 0.656 | 0.693 | 0.952 | 0.711 | 0.603 | 0.083 |
高界高度 | 0.990 | 0.255 | 0.421 | 0.898 | 0.906 | 0.659 | 0.203 | 1.177 |
近界高度 | 0.400 | 0.425 | 0.253 | 0.211 | 1.285 | 0.173 | 0.343 | 0.511 |
远界斜距 | 0.991 | 0.158 | 0.855 | 0.550 | 0.684 | 0.203 | 0.427 | 1.344 |
近界斜距 | 1.667 | 0.725 | 0.141 | 1.590 | 0.551 | 1.168 | 0.368 | 0.499 |
最大高低角 | 0.667 | 0.756 | 1.101 | 0.811 | 0.578 | 0.697 | 0.707 | 1.026 |
最大航路角 | 0.584 | 0.855 | 0.763 | 0.640 | 1.014 | 0.538 | 0.779 | 0.700 |
目标容量 | 0.162 | 0.409 | 0.254 | 0.503 | 0.899 | 0.961 | 0.587 | 0.023 |
发射装置数量 | 0.500 | 0.484 | 0.523 | 0.590 | 0.165 | 0.523 | 0.429 | 0.414 |
导弹联装数 | 0.800 | 0.617 | 0.409 | 0.501 | 0.141 | 0.866 | 0.888 | 0.616 |
单目标射弹数 | 0.750 | 0.537 | 0.515 | 0.377 | 0.700 | 0.616 | 0.610 | 0.463 |
导弹装填时间 | 0.830 | 0.755 | 0.759 | 0.471 | 0.698 | 0.677 | 0.685 | 0.834 |
单发命中率 | 0.976 | 0.589 | 0.973 | 0.941 | 0.984 | 0.867 | 0.979 | 0.895 |
抗干扰能力 | 0.738 | 0.910 | 0.917 | 0.803 | 0.876 | 0.945 | 0.807 | 1.006 |
可用过载 | 0.700 | 0.510 | 0.573 | 1.062 | 0.592 | 0.898 | 0.889 | 0.872 |
发动机工作时间 | 0.994 | 0.918 | 0.953 | 1.048 | 0.881 | 0.884 | 0.727 | 0.928 |
最大速度 | 0.990 | 0.442 | 0.404 | 0.600 | 1.097 | 0.465 | 0.271 | 0.270 |
反侦察能力 | 0.896 | 0.885 | 1.048 | 1.032 | 0.841 | 0.972 | 0.888 | 0.969 |
抗毁能力 | 0.990 | 0.621 | 0.718 | 0.779 | 0.838 | 0.764 | 1.278 | 1.024 |
展开时间 | 0.794 | 0.791 | 1.046 | 0.826 | 0.954 | 0.965 | 0.790 | 0.950 |
撤收时间 | 0.750 | 0.705 | 0.806 | 0.855 | 0.821 | 0.794 | 0.886 | 0.843 |
最大行军速度 | 0.550 | 0.482 | 0.471 | 0.506 | 0.558 | 0.608 | 0.606 | 0.550 |
最大行军里程 | 0.750 | 0.898 | 0.772 | 0.727 | 0.624 | 0.776 | 0.734 | 0.666 |
平均故障间隔时间 | 0.986 | 0.654 | 0.557 | 0.785 | 0.710 | 0.407 | 0.859 | 0.474 |
平均修复时间 | 0.282 | 0.348 | 0.291 | 0.405 | 0.986 | 0.132 | 0.158 | 0.557 |
目标种类 | 0.800 | 0.759 | 0.662 | 0.703 | 0.672 | 0.833 | 0.769 | 0.502 |
目标机动过载 | 0.650 | 0.649 | 0.824 | 0.533 | 0.823 | 0.727 | 0.926 | 0.598 |
目标雷达截面 | 0.780 | 0.930 | 1.083 | 0.787 | 0.737 | 0.797 | 0.796 | 1.150 |
目标最大速度 | 0.750 | 0.746 | 0.859 | 0.755 | 0.951 | 1.140 | 1.051 | 0.869 |
期望值 | 0.780 | 1.198 | 0.796 | 1.048 | 0.801 | 0.986 | 0.905 | 0.639 |
1 | 乔蓉, 周峰. 基于PCA-BP神经网络地空导弹武器系统作战效能评估[J]. 军事运筹与系统工程, 2020, 34(4): 38-43, 67. |
Qiao Rong, Zhou Feng. Evaluation of Operational Efficiency for Ground-to-air Missile Weapon System Based on PCA-BP Neural Network[J]. Military Operations Research and Systems Engineering, 2020, 34(4): 38-43, 67. | |
2 | 麻晓伟, 张琳. 基于AE-BP神经网络的地空导弹武器系统作战效能评估[J]. 空天预警研究学报, 2022, 36(6): 425-429. |
Ma Xiaowei, Zhang Lin. AE-BP Neural Network-based Operational Effectiveness Assessment of Surface-to-air Missile Weapon System[J]. Journal of Air & Space Early Warning Research, 2022, 36(6): 425-429. | |
3 | 唐家明. DEM几何精度脱密模型与算法研究[D]. 南京: 南京师范大学, 2018. |
Tang Jiaming. Research on Decipherment Model and Algorithm of Geometric Accuracy for DEM[D]. Nanjing: Nanjing Normal University, 2018. | |
4 | 姬正一, 陈阳, 沈培志, 等. 决策树集成方法在反舰导弹效能评估中的应用[J]. 现代防御技术, 2021, 49(4): 15-23, 34. |
Ji Zhengyi, Chen Yang, Shen Peizhi, et al. Decision Tree Integration Method Application in Effectiveness Evaluation of Anti-ship Missile Weapon System[J]. Modern Defence Technology, 2021, 49(4): 15-23, 34. | |
5 | 卢美鸿, 刘国海, 王富良, 等. 基于PLC的两电机同步系统的神经网络逆控制[J]. 电气传动, 2007, 37(11): 50-54. |
Lu Meihong, Liu Guohai, Wang Fuliang, et al. Neural Network Inverse Control in PLC of Two-motor Synchronous System[J]. Electric Drive, 2007, 37(11): 50-54. | |
6 | 雷梓烽. 基于OODA环的作战体系对抗博弈建模研究[D]. 武汉: 华中科技大学, 2020. |
Lei Zifeng. Research on Operation System-of-systems Combat Game Model Based on OODA Loop[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
7 | 赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247. |
Zhao Danling, Tan Yuejin, Li Jichao, et al. Armament System of Systems Contribution Evaluation Based on Operation Loop[J]. Systems Engineering and Electronics, 2017, 39(10): 2239-2247. | |
8 | 梁家林, 熊伟. 基于作战环的武器装备体系能力评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1810-1819. |
Liang Jialin, Xiong Wei. Capabilities Assessment of the Weaponry System Based on Combat Ring[J]. Systems Engineering and Electronics, 2019, 41(8): 1810-1819. | |
9 | 王君, 赵杰, 邵雷, 等. 基于ADC方法的地空导弹系统效能评估模型[J]. 现代防御技术, 2015, 43(6): 13-20. |
Wang Jun, Zhao Jie, Shao Lei, et al. System Effectiveness Evaluation Model of Ground to Air Missile Based on ADC Method[J]. Modern Defence Technology, 2015, 43(6): 13-20. | |
10 | 燕永敦, 杨华东. 指数法在舰空导弹武器作战能力评估中的应用[J]. 弹箭与制导学报, 2007, 27(2): 389-391. |
Yan Yongdun, Yang Huadong. Application of Index Method in the Estimate of Shipborne Antiaircraft Missile's Combat Capability[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 389-391. | |
11 | 王君, 周林, 雷虎民, 等. 中远程地空导弹系统效能评估模型[J]. 系统仿真学报, 2010, 22(7): 1761-1768, 1772. |
Wang Jun, Zhou Lin, Lei Humin, et al. Medium and Far Range Ground-to-air Missile System Effectiveness Evaluation Model[J]. Journal of System Simulation, 2010, 22(7): 1761-1768, 1772. | |
12 | 王斌, 王基策, 尚颖, 等. 防空反导体系网络攻击效能评估与防御策略建议[J]. 现代防御技术, 2023, 51(3): 57-65. |
Wang Bin, Wang Jice, Shang Ying, et al. Effectiveness Evaluation and Defense Strategies for Network Attacks of Air and Missile Defense System[J]. Modern Defence Technology, 2023, 51(3): 57-65. | |
13 | 季银银, 刘婷婷, 沈建洲, 等. 基于神经网络模型的高铁轮对故障诊断和预测方法的研究[J]. 机电工程技术, 2020, 49(5): 14-17. |
Ji Yinyin, Liu Tingting, Shen Jianzhou, et al. Research on Fault Diagnosis and Fault Prediction Method of High-speed Railway Wheelset Based on Neural Network[J]. Mechanical & Electrical Engineering Technology, 2020, 49(5): 14-17. | |
14 | 龚亮, 王庆权, 罗红吉. 防空导弹武器系统作战效能评估实战化改进模型[J]. 现代防御技术, 2021, 49(6): 9-15. |
Gong Liang, Wang Qingquan, Luo Hongji. Real Combat-like Improved Model of Operational Effectiveness Evaluation of Air Defense Missile Weapon System[J]. Modern Defence Technology, 2021, 49(6): 9-15. | |
15 | 李钢, 吕国芳. 基于正则化RBF神经网络的混凝土强度预测[J]. 电子设计工程, 2014, 22(13): 52-54, 57. |
Li Gang, Guofang Lü. Prediction of Concrete Strength Based on Regular RBF Neural Network[J]. Electronic Design Engineering, 2014, 22(13): 52-54, 57. | |
16 | 郭日辉. 基于人工神经网络的上证指数风险预警研究[D]. 北京: 中国政法大学, 2020. |
Guo Rihui. Research on Risk Warning of Shanghai Stock Index Based on Artificial Neural Network[D]. Beijing: China University of Political Science and Law, 2020. | |
17 | 张琪琪. 基于神经网络的目标判别与作战效能评估研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
Zhang Qiqi. Research on Target Identification and Operational Effectiveness Evaluation Based on Neural Networks[D]. Harbin: Harbin Engineering University, 2020. | |
18 | 施宏达, 李秀飞, 张立中. 虚拟现实灵巧手姿态力度控制算法与仿真[J]. 长春理工大学学报(自然科学版), 2016, 39(5): 70-75, 84. |
Shi Hongda, Li Xiufei, Zhang Lizhong. Control Algorithm of Posture and Force Simulation for Dexterous Hand in Virtual Reality[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2016, 39(5): 70-75, 84. | |
19 | 邢英梅, 王竹君, 袁萌萌, 等. RBF神经网络在估算男西服用料长度中的应用[J]. 武汉纺织大学学报, 2016, 29(3): 43-47. |
Xing Yingmei, Wang Zhujun, Yuan Mengmeng, et al. Application of RBF Artificial Neural Networks in Estimating Spreading Length of Man Suit[J]. Journal of Wuhan Textile University, 2016, 29(3): 43-47. | |
20 | 陈世隐, 郭佳杰, 黄国钦. 基于径向基神经网络对磨削功率预测的研究[J]. 超硬材料工程, 2016, 28(4): 33-36. |
Chen Shiyin, Guo Jiajie, Huang Guoqin. Research on Prediction of Grinding Power Based on RBF Neural Network[J]. Superhard Material Engineering, 2016, 28(4): 33-36. |
[1] | Liu Fei, Lai Peng, Lu Yingbo, Wang Min, Lu Zhifeng. Research on Hybrid Experimental Scheme Design for Combat Simulation [J]. Journal of System Simulation, 2024, 36(3): 735-742. |
[2] | Chen Shikang, Wang Zhimin, Liang Biao, Gu Kunren, Song Keman, Gao Yuan. Modeling Method of Blue Army Warship Formation Air Defense Command and Control for System-of-systems Simulation [J]. Journal of System Simulation, 2024, 36(10): 2246-2256. |
[3] | Zhao Yu, Yang Caijin, Wang Tanming, Xu Jing, Zhou Shuai. Path Following Control and Simulation Analysis of Multi-articulated Vehicles [J]. Journal of System Simulation, 2024, 36(10): 2300-2313. |
[4] | Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei. Multi-agent Cooperative Combat Simulation in Naval Battlefield with Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 786-796. |
[5] | Ying Xu, Shuai Zhang, Zhige Xie, Xinhai Xu, Manhui Sun, Ning Guo. A Simulation Method of Airborne Radar Real-time Detection Based on Three-dimensional Subdivision [J]. Journal of System Simulation, 2023, 35(2): 268-276. |
[6] | Baiyuan Ding, Fuling Mu, Yunpeng Li, Zhongkuan Chen, Chengyu Liu. Design of System Combat Simulation Platform for Complex Electromagnetic Environment [J]. Journal of System Simulation, 2023, 35(2): 330-338. |
[7] | Hu Jie, Bao Fan. Airport Operational Efficiency Evaluation Based on Combined Weighting-TOPSIS Model [J]. Journal of System Simulation, 2023, 35(12): 2570-2581. |
[8] | Li Jing, Zhang Taotao, Jin Kai, Yuan Shengzhi, Zha Zilong. Time-varying RBF Neural Network-based Controller Design for a Class of Time-varying Nonlinear Systems [J]. Journal of System Simulation, 2023, 35(10): 2223-2236. |
[9] | Wang Yukun, Wang Ze, Dong Liwei, Li Ni. Research on Multi-aircraft Air Combat Behavior Modeling Based on Hierarchical Intelligent Modeling Methods [J]. Journal of System Simulation, 2023, 35(10): 2249-2261. |
[10] | Zheng Yang, Zhimin Xiang, Shiwen Ma. A Method of Loose Coupling Entity Modeling Based on Variable Rules [J]. Journal of System Simulation, 2022, 34(7): 1506-1511. |
[11] | Lifeng Zhang, Yu Miao. A High Resolution Reconstruction Method of Temperature Distribution in Acoustic Tomography [J]. Journal of System Simulation, 2022, 34(09): 2065-2073. |
[12] | Xie Xu, Qiu Xiaogang, Duan Hong, Huang Kedi. Research on Combat Simulation Body of Knowledge [J]. Journal of System Simulation, 2021, 33(4): 773-780. |
[13] | Li Zhongqi, Xing Yueshuang. Research on Precision Parking Control Method for EMU Inbound Process [J]. Journal of System Simulation, 2021, 33(1): 149-158. |
[14] | Lei Yonglin, Zhu Zhi, Gan bin, Lei Sen, Chen Yong. Combat Effectiveness Simulation Evaluation Framework of Complex Weapon System [J]. Journal of System Simulation, 2020, 32(9): 1654-1663. |
[15] | Wu Wei. Research on Dynamic Editable Method for Combat Simulation Model Combination [J]. Journal of System Simulation, 2020, 32(5): 967-974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||