Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 541-550.doi: 10.16182/j.issn1004731x.joss.23-1220
• Papers • Previous Articles Next Articles
Shen Jiawei, Cai Daye, Yang Guoqing, Lü Pan, Li Hong
Received:2023-10-10
Revised:2023-12-27
Online:2025-02-14
Published:2025-02-10
Contact:
Yang Guoqing
CLC Number:
Shen Jiawei, Cai Daye, Yang Guoqing, Lü Pan, Li Hong. Dynamic Loading Simulation Method for Large-scale Spiking Neural Network[J]. Journal of System Simulation, 2025, 37(2): 541-550.
| 1 | Gewaltig M O, Diesmann M. Nest (Neural Simulation Tool) [J]. Scholarpedia, 2007, 2(4): 1430. |
| 2 | Ippen Tammo, Eppler Jochen M, Hans E Plesser, et al. Constructing Neuronal Network Models in Massively Parallel Environments[J]. Frontiers in Neuroinformatics, 2017, 11: 30. |
| 3 | Jordan Jakob, Ippen Tammo, Helias Moritz, et al. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers[J]. Frontiers in Neuroinformatics, 2018, 12: 2. |
| 4 | Bekolay T, Bergstra J, Hunsberger E, et al. Nengo: A Python Tool for Building Large-scale Functional Brain Models[J]. Frontiers in Neuroinformatics, 2014, 7: 48. |
| 5 | Stewart T C. A Technical Overview of the Neural Engineering Framework[EB/OL]. (2012-10-29) [2023-09-15]. . |
| 6 | Stewart T, Choo F X, Eliasmith C. Spaun: A Perception-cognition-action Model Using Spiking Neurons[C]//Proceedings of the Annual Meeting of the Cognitive Science Society. [S.l.: s.n.], 2012: 1018-1023. |
| 7 | Dan Goodman, Brette Romain. Brian: A Simulator for Spiking Neural Networks in Python[J]. Frontiers in Neuroinformatics, 2008, 2: 5. |
| 8 | Stimberg Marcel, Goodman D F M, Nowotny T. Brian2GeNN: A System for Accelerating a Large Variety of Spiking Neural Networks with Graphics Hardware[J/OL]. bioRxiv. (2018-10-20) [2023-09-15]. . |
| 9 | Yavuz E, Turner J, Nowotny T. GeNN: A Code Generation Framework for Accelerated Brain Simulations[J]. Scientific Reports, 2016, 6(1): 18854. |
| 10 | Yamaura Hiroshi, Igarashi Jun, Yamazaki Tadashi. Simulation of a Human-scale Cerebellar Network Model on the K Computer[J]. Frontiers in Neuroinformatics, 2020, 14: 16. |
| 11 | Fang Wei, Chen Yanqi, Ding Jianhao, et al. SpikingJelly: An Open-source Machine Learning Infrastructure Platform for Spike-based Intelligence[J]. Science Advances, 2023, 9(40): eadi1480. |
| 12 | Hong Chaofei, Yuan Mengwen, Zhang Mengxiao, et al. SPAIC: A Spike-based Artificial Intelligence Computing Framework[J]. IEEE Computational Intelligence Magazine, 2024, 19(1): 51-65. |
| 13 | Syed Sahil Abbas Zaidi, Ansari M S, Aslam Asra, et al. A Survey of Modern Deep Learning Based Object Detection Models[J]. Digital Signal Processing, 2022, 126: 103514. |
| 14 | Minaee S, Boykov Y, Porikli F, et al. Image Segmentation Using Deep Learning: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. |
| 15 | Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[EB/OL]. (2015-03-09) [2023-09-15]. . |
| 16 | Rhu M, Gimelshein N, Clemons J, et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-efficient Neural Network Design[C]//2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Piscataway: IEEE, 2016: 1-13. |
| 17 | Shriram S B, Garg Anshuj, Kulkarni Purushottam. Dynamic Memory Management for GPU-based Training of Deep Neural Networks[C]//2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Piscataway: IEEE, 2019: 200-209. |
| 18 | Wang Linnan, Ye Jinmian, Zhao Yiyang, et al. Superneurons: Dynamic GPU Memory Management for Training Deep Neural Networks[C]//Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York: Association for Computing Machinery, 2018: 41-53. |
| 19 | Gusak Julia, Cherniuk Daria, Shilova Alena, et al. Survey on Efficient Training of Large Neural Networks[C]//Proceedings of the Thirty-first International Joint Conference on Artificial Intelligence Survey Track. California: International Joint Conferences on Artificial Intelligence Organization, 2022: 5494-5501. |
| 20 | Alzubaidi Laith, Zhang Jinglan, Humaidi Amjad J, et al. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions[J]. Journal of Big Data, 2021, 8(1): 53. |
| 21 | Huang C C, Jin Gu, Li Jinyang. SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping[C]//Proceedings of the Twenty-fifth International Conference on Architectural Support for Programming Languages and Operating Systems. New York: Association for Computing Machinery, 2020: 1341-1355. |
| 22 | Ren Jie, Rajbhandari S, Aminabadi R Y, et al. ZeRO-offload: Democratizing Billion-scale Model Training[C]//USENIX Annual Technical Conference. Berkeley: USENIX, 2021: 551-564. |
| [1] | Wang Linxuan, Liu Yongkui, Zhang Lin, Lin Tingyu, Wang Lihui. Anylogic-based Platform-Enterprise Collaborative Scheduling Simulation System for Cloud Manufacturing [J]. Journal of System Simulation, 2025, 37(9): 2225-2241. |
| [2] | Ning Yida, Wang Jiongqi, Wei Juhui, Bai Zhenzu, He Zhangming. Station Layout Optimization Method and Simulation for Non-cooperative Target in Angle of Arrival Positioning [J]. Journal of System Simulation, 2025, 37(9): 2287-2300. |
| [3] | Li Junhui, Sun Songtao, Liu Fei. Research on Strong Real-time Synchronisation Algorithm for LVC Co-simulation [J]. Journal of System Simulation, 2025, 37(9): 2301-2314. |
| [4] | Li Pengfei, Xu Wei, Piao Yongjie, Fang Yinghong, Shi Dunpan. Digital Imaging Simulation of Complex Scene of Space-based Space Small Target [J]. Journal of System Simulation, 2025, 37(9): 2315-2334. |
| [5] | Zhao Zejing, Shang Junliang, Qin Yanpei. Kill Chain Efficiency Evaluation Model Based on Gray DEMATEL-ANP [J]. Journal of System Simulation, 2025, 37(9): 2375-2386. |
| [6] | Xu Haohua, Xiao Bin, Cui Yunhao. Research on the Truth, Function and Common Principles of Simulation [J]. Journal of System Simulation, 2025, 37(9): 2431-2438. |
| [7] | Li Hongmin, Han Xiao, Huang Shuo, Zhang Shengpeng, Rong Shuanglong, Li Hao, Qian Cheng. Storage Life Assessment Methods for Long-term Storage Products Based on Multi-scale Simulation: A Review [J]. Journal of System Simulation, 2025, 37(8): 1907-1920. |
| [8] | Gong Feng, Jiang Tao, Zhang Qin, Liu Yu. Simulation and Optimization of Support Processes for Aircraft Fleet Launch Under Limited Resources [J]. Journal of System Simulation, 2025, 37(8): 1965-1977. |
| [9] | Niu Jianmin, Zhong Yue, Xu Feng, Ma Jindun. Research on Simulation Technology of Fire Extinguishing in Engine Compartment of Special Vehicle [J]. Journal of System Simulation, 2025, 37(8): 2030-2042. |
| [10] | Yang Xuesen, Zhao Wei, Zhang Binglong, Ren Sanqun, Xiang Xiaorong, Zhao Qingjun. Study on Semi-physical Simulation Method of Air Turbo Rocket Engine in Startup Process [J]. Journal of System Simulation, 2025, 37(8): 2061-2073. |
| [11] | Yang Chunyu, Zhang Chuang, Zhang Xiaofan. Ship Fire Prediction Method Based on Evidence Theory with Fuzzy Reward [J]. Journal of System Simulation, 2025, 37(8): 2152-2162. |
| [12] | Xie Xueyuan, Lin Chen, Wu Han, Zhao Qinglan, Gao Junfei, Hao Qiangguo, Zheng Xinqian. Research on Joint Simulation of Special Vehicle Engine Operation Characteristics Based on Virtual Driving Scenarios [J]. Journal of System Simulation, 2025, 37(8): 2163-2175. |
| [13] | Wang Zili, Gao Yuntian, Yang Dezhen, Liu Yeyang, Ren Yi. Reliability Simulation Testing and Verification Technologies for Intelligent Systems: Frontiers, Progress, and Challenges [J]. Journal of System Simulation, 2025, 37(7): 1583-1606. |
| [14] | Qiu Xiaogang, Zhu Zhengqiu, Xu Kai, Gong Guanghong. Current Situation of Simulation Course Offerings in Colleges and Universities in China and Abroad [J]. Journal of System Simulation, 2025, 37(7): 1639-1648. |
| [15] | Wu Jianping, Li Guanzhou, Zhao Shuai, Huang Ling. Intelligent Transition of Automotive Industry Driven by Autonomous Driving Simulation Testing Technology [J]. Journal of System Simulation, 2025, 37(7): 1649-1664. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||