Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (4): 873-887.doi: 10.16182/j.issn1004731x.joss.22-1353
• Papers • Previous Articles Next Articles
Liang Hongtao(), Kong Lingchao(
), Liu Guozhu, Dong Wenxuan, Liu Xiangyi
Received:
2022-11-15
Revised:
2023-02-22
Online:
2024-04-15
Published:
2024-04-18
Contact:
Kong Lingchao
E-mail:lht@qust.edu.cn;kk1392567492@163.com
CLC Number:
Liang Hongtao, Kong Lingchao, Liu Guozhu, Dong Wenxuan, Liu Xiangyi. ASL-CatBoost Method for Wind Turbine Fault Detection Integrated with Digital Twin[J]. Journal of System Simulation, 2024, 36(4): 873-887.
Table 2
Characteristics of wind power datasets
特征 | 含义 |
---|---|
time | 时间 |
wind_speed | 风速 |
generator_speed | 发电机转速 |
power | 功率 |
wind_direction | 风向 |
wind_direction_mean | 风向平均值 |
yaw_position | 偏航位置 |
yaw_speed | 偏航速度 |
pitch1_angle | 叶片1角度 |
pitch2_angle | 叶片2角度 |
pitch3_angle | 叶片3角度 |
pitch1_speed | 叶片1速度 |
pitch2_speed | 叶片2速度 |
pitch3_speed | 叶片3速度 |
pitch1_moto_tmp | 叶片1变桨电机温度 |
pitch2_moto_tmp | 叶片2变桨电机温度 |
pitch3_moto_tmp | 叶片3变桨电机温度 |
acc_x | x方向加速度 |
acc_y | y方向加速度 |
environment_tmp | 环境温度 |
int_tmp | 机舱温度 |
pitch1_ng5_tmp | ng5变桨充电器1温度 |
pitch2_ng5_tmp | ng5变桨充电器2温度 |
pitch3_ng5_tmp | ng5变桨充电器3温度 |
pitch1_ng5_DC | ng5变桨充电器1电流 |
pitch2_ng5_DC | ng5变桨充电器2电流 |
pitch3_ng5_DC | ng5变桨充电器3电流 |
group | 分组 |
Table 3
Performance comparison of each algorithm model
模型 | 精确率 | 召回率 | F1分数 |
---|---|---|---|
GBDT | 0.922 703 | 0.936 614 | 0.929 606 |
XGBoost | 0.907 069 | 0.925 287 | 0.916 087 |
LightGBM | 0.913 742 | 0.936 578 | 0.925 019 |
CatBoost | 0.926 148 | 0.930 403 | 0.928 271 |
CatBoost1 | 0.934 316 | 0.941 628 | 0.937 958 |
CatBoost2 | 0.935 743 | 0.932 849 | 0.934 294 |
ASL-CatBoost | 0.949 427 | 0.943 276 | 0.946 341 |
1 | 蒲天骄, 陈盛, 赵琦, 等. 能源互联网数字孪生系统框架设计及应用展望[J]. 中国电机工程学报, 2021, 41(6): 2012-2028, 前插10. |
Pu Tianjiao, Chen Sheng, Zhao Qi, et al. Framework Design and Application Prospect for Digital Twins System of Energy Internet[J]. Proceedings of the CSEE, 2021, 41(6): 2012-2028, 前插10. | |
2 | 何必胜, 陈鹏, 张宏翔, 等. 基于数字孪生的铁路客运站技术作业实时调度方法[J]. 系统仿真学报, 2022, 34(10): 2130-2141. |
He Bisheng, Chen Peng, Zhang Hongxiang, et al. Real-time Scheduling Method for Railway Passenger Station Operations Based on Digital Twin[J]. Journal of System Simulation, 2022, 34(10): 2130-2141. | |
3 | Abdulmotaleb El Saddik. Digital Twins: The Convergence of Multimedia Technologies[J]. IEEE MultiMedia, 2018, 25(2): 87-92. |
4 | Tao Fei, Qi Qinglin. Make More Digital Twins[J]. Nature, 2019, 573(7775): 490-491. |
5 | 伍朝辉, 刘振正, 石可, 等. 交通场景数字孪生构建与虚实融合应用研究[J]. 系统仿真学报, 2021, 33(2): 295-305. |
Wu Zhaohui, Liu Zhenzheng, Shi Ke, et al. Review on the Construction and Application of Digital Twins in Transportation Scenes[J]. Journal of System Simulation, 2021, 33(2): 295-305. | |
6 | 袁标, 黄友锐, 徐善永, 等. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
Yuan Biao, Huang Yourui, Xu Shanyong, et al. Construction and Application of Digital Twin System for Optical Fiber Secondary Coating Workshop[J]. Journal of System Simulation, 2023, 35(9): 2011-2022. | |
7 | 王尚刚, 程江峰, 高顺利, 等. 数字孪生智慧燃气系统:概念、架构与应用[J]. 计算机集成制造系统, 2022, 28(8): 2302-2317. |
Wang Shanggang, Cheng Jiangfeng, Gao Shunli, et al. Digital Twin-based Smart Gas System: Concepts, Architecture and Applications[J]. Computer Integrated Manufacturing Systems, 2022, 28(8): 2302-2317. | |
8 | Grieves M, Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]//Kahlen F J, Flumerfelt S, Alves A. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Cham: Springer International Publishing, 2017: 85-113. |
9 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
Zhang Lin, Lu Han. Discussing Digital Twin from of Modeling and Simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007. | |
10 | Leng Jiewu, Wang Dewen, Shen Weiming, et al. Digital Twins-based Smart Manufacturing System Design in Industry 4.0: A Review[J]. Journal of Manufacturing Systems, 2021, 60: 119-137. |
11 | 陶飞, 张萌, 程江峰, 等. 数字孪生车间-一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. |
Tao Fei, Zhang Meng, Cheng Jiangfeng, et al. Digital Twin Workshop: A New Paradigm for Future Workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9. | |
12 | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. | |
13 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
14 | Zhang Yanan, Du Yuefeng, Yang Zihan, et al. Construction Method of High-horsepower Tractor Digital Twin[J]. Digital Twin, 2022, 2(12): 17615. |
15 | 卢强. 数字电力系统(DPS)[J]. 电力系统自动化, 2000, 24(9): 1-4. |
Lu Qiang. Digital Power Systems[J]. Automation of Electric Power Systems, 2000, 24(9): 1-4. | |
16 | 贺兴, 艾芊, 朱天怡, 等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术, 2020, 44(6): 2009-2019. |
He Xing, Ai Qian, Zhu Tianyi, et al. Opportunities and Challenges of the Digital Twin in Power System Applications[J]. Power System Technology, 2020, 44(6): 2009-2019. | |
17 | 董泽, 姜炜, 王晓燕, 等. 数字孪生在火电机组数字化转型中的应用[J]. 系统仿真学报, 2023, 35(6): 1144-1156. |
Dong Ze, Jiang Wei, Wang Xiaoyan, et al. Application of Digital Twin in Digital Transformation of Thermal Power Units[J]. Journal of System Simulation, 2023, 35(6): 1144-1156. | |
18 | Tao Fei, Zhang Meng, Liu Yushan, et al. Digital Twin Driven Prognostics and Health Management for Complex Equipment[J]. CIRP Annals, 2018, 67(1): 169-172. |
19 | 房方, 姚贵山, 胡阳, 等. 风力发电机组数字孪生系统[J]. 中国科学:技术科学, 2022, 52(10): 1582-1594. |
Fang Fang, Yao Guishan, Hu Yang, et al. Digital Twin System of a Wind Turbine[J]. Scientia Sinica(Technologica), 2022, 52(10): 1582-1594. | |
20 | 金晓航, 王宇, Zhang Bin. 工业大数据驱动的故障预测与健康管理[J]. 计算机集成制造系统, 2022, 28(5): 1314-1336. |
Jin Xiaohang, Wang Yu, Zhang Bin. Industrial Big Data-driven Fault Prognostics and Health Management[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1314-1336. | |
21 | 宋威, 林建维, 周方泽, 等. 基于改进降噪自编码器的风机轴承故障诊断方法[J]. 电力系统保护与控制, 2022, 50(10): 61-68. |
Song Wei, Lin Jianwei, Zhou Fangze, et al. Wind Turbine Bearing Fault Diagnosis Method Based on an Improved Denoising AutoEncoder[J]. Power System Protection and Control, 2022, 50(10): 61-68. | |
22 | 刘家瑞, 杨国田, 王孝伟. 基于孪生深度神经网络的风电机组故障诊断方法[J]. 系统仿真学报, 2022, 34(11): 2348-2358. |
Liu Jiarui, Yang Guotian, Wang Xiaowei. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network[J]. Journal of System Simulation, 2022, 34(11): 2348-2358. | |
23 | 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186. |
Zhang Chenyuan, Tao Fei. Evaluation Index System for Digital Twin Model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186. | |
24 | Prokhorenkova Liudmila, Gusev Gleb, Vorobev Aleksandr, et al. CatBoost: Unbiased Boosting with Categorical Features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018: 6639-6649. |
25 | Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. |
26 | Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016: 785-794. |
27 | Ke Guolin, Meng Qi, Finley T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 3149-3157. |
28 | Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2999-3007. |
29 | 王毅, 朱晓荣, 赵书强. 风力发电系统的建模与仿真[M]. 北京: 中国水利水电出版社, 2015: 45-71. |
[1] | Zhang Dayong, Yang Jingyu, Ma Jun, Song Chenye. Construction of Machine Learning Data Set for Analyzing the Replay of the Wargaming [J]. Journal of System Simulation, 2024, 36(3): 608-624. |
[2] | Hu Yang, Wang Weiran, Fang Fang, Song Ziqiu, Xu Yuhan, Liu Jizhen. Dynamic Digital Twin Modelling and Semi-Physical Simulation of Wind Turbine Operation [J]. Journal of System Simulation, 2024, 36(3): 636-648. |
[3] | Zhao Yingying, Dong Pusen, Zhu Tianchen, Li Fan, Su Yun, Tai Zhenying, Sun Qingyun, Fan Hang. Efficiency Optimization Method for Data Sampling in Power Grid Topology Scheduling Simulation [J]. Journal of System Simulation, 2024, 36(2): 283-295. |
[4] | Mou Jianpeng, Xiong Weili. Fault Detection Based on Sliding Window and Multiblock Convolutional Autoencoders [J]. Journal of System Simulation, 2024, 36(2): 423-435. |
[5] | Yin Yanchao, Feng Jiasheng, Yi Bin, Li Wang, Yin Qingwen. Visual Monitoring System of Digital Twin Workshop for Process Manufacturing [J]. Journal of System Simulation, 2024, 36(1): 120-130. |
[6] | Zhao Yanbo, Cai Yuanli, Hu Huaizhong. Recursive Subspace-based Model Refinement Method for Digital Twin of Thermal Power Unit [J]. Journal of System Simulation, 2024, 36(1): 195-202. |
[7] | Zhong Jinghui, Lin Yutian, Li Wenqiang, Cai Wentong. Intelligent Airport Crowd Management Technology Based on Digital Twin [J]. Journal of System Simulation, 2024, 36(1): 27-38. |
[8] | Yuan Biao, Huang Yourui, Xu Shanyong, Rong Xue. Construction and Application of Digital Twin System for Optical Fiber Secondary Coating Workshop [J]. Journal of System Simulation, 2023, 35(9): 2011-2022. |
[9] | Lü Nan, Qibing Wang, Jiawei Lu, Juntong Chen, Gang Xiao. Monitoring Method Research on Passenger Behavior on Escalator Based on Digital Twin [J]. Journal of System Simulation, 2023, 35(8): 1737-1747. |
[10] | Han Lu, Lin Zhang, Kunyu Wang, Zejun Huang, Hongbo Cheng, Jin Cui. A Framework on Equipment Digital Twin Credibility Assessment [J]. Journal of System Simulation, 2023, 35(7): 1455-1471. |
[11] | Jian Xu, Xin Song, Xiuping Liu, Bo Chen, Huanying Yan. Modeling and System Realization of Assembly Robot Based on Digital Twin [J]. Journal of System Simulation, 2023, 35(7): 1497-1507. |
[12] | Feng Li, Tian Zheng, Wei Song. Modeling and Identification of Wind Power Generation System Based on Hammerstein Model [J]. Journal of System Simulation, 2023, 35(7): 1517-1525. |
[13] | Ze Dong, Wei Jiang, Xiaoyan Wang, Lei Liu. Application of Digital Twin in Digital Transformation of Thermal Power Units [J]. Journal of System Simulation, 2023, 35(6): 1144-1156. |
[14] | Shun Yao, Zhongzhi Hu, Wenyu Cao, Jiali Yang. Research and Development of Immersive Aero-engine Scene Simulation System [J]. Journal of System Simulation, 2023, 35(6): 1395-1404. |
[15] | Jiaxin Chen, Guohui Zhou, Jianbai Yang. Construction Technology of Hand Posture Dataset Based on Virtual Simulation Method [J]. Journal of System Simulation, 2023, 35(4): 862-870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||