Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (3): 770-781.doi: 10.16182/j.issn1004731x.joss.22-1320
• Papers • Previous Articles Next Articles
Qin Baoxin1(), Zhang Yuxiao2, Wu Sirui2, Cao Weichong1, Li Zhan2,3(
)
Received:
2022-11-05
Revised:
2023-04-24
Online:
2024-03-15
Published:
2024-03-14
Contact:
Li Zhan
E-mail:11620065@chnenergy.com.cn;zhanli@hit.edu.cn
CLC Number:
Qin Baoxin, Zhang Yuxiao, Wu Sirui, Cao Weichong, Li Zhan. Intelligent Optimization of Coal Terminal Unloading Scheduling Based on Improved D3QN Algorithm[J]. Journal of System Simulation, 2024, 36(3): 770-781.
1 | Ambrosino Daniela, Sciomachen Anna, Tanfani Elena. A Decomposition Heuristics for the Container Ship Stowage Problem[J]. Journal of Heuristics, 2006, 12(3): 211-233. |
2 | Ambrosino Daniela, Sciomachen Anna, Tanfani Elena. Stowing a Containership: The Master Bay Plan Problem[J]. Transportation Research Part A: Policy and Practice, 2004, 38(2): 81-99. |
3 | Todd D S, Sen P. A Multiple Criteria Genetic Algorithm for Containership Loading[C]///Proceedings of the 7th International Conference on Genetic Algorithms. [S.l.]: [s.n.], 1997: 674-681. |
4 | 卫家骏. 集装箱船智能配载研究[D]. 大连: 大连海事大学, 2012. |
Wei Jiajun. The Research on Container Ship's Intelligent Stowage[D]. Dalian: Dalian Maritime University, 2012. | |
5 | Briskorn Dirk, Emde Simon, Boysen Nils. Cooperative Twin-crane Scheduling[J]. Discrete Applied Mathematics, 2016, 211: 40-57. |
6 | 魏晨, 胡志华, 高超锋, 等. 自动化集装箱码头堆场内双起重机调度模型与算法[J]. 大连海事大学学报, 2015, 41(4): 75-80, 89. |
Wei Chen, Hu Zhihua, Gao Chaofeng, et al. Scheduling Model and Algorithm of Twin Synchronized Stacking Cranes in Stack Yard of Automated Container Terminal[J]. Journal of Dalian Maritime University, 2015, 41(4): 75-80, 89. | |
7 | 黄继伟, 韩晓龙. 基于遗传算法的自动化集装箱码头双轨道吊协同调度优化研究[J]. 计算机应用与软件, 2018, 35(9): 92-98, 143. |
Huang Jiwei, Han Xiaolong. Collaborative Scheduling Optimization of Twin Automated Stacking Cranes in Automatic Container Terminals Based on Genetic Algorithm[J]. Computer Applications and Software, 2018, 35(9): 92-98, 143. | |
8 | Amir Hossein Gharehgozli, Laporte G, Yu Yugang, et al. Scheduling Twin Yard Cranes in a Container Block[J]. Transportation Science, 2015, 49(3): 686-705. |
9 | 魏亚茹, 朱瑾. 自动化码头双场桥调度与集装箱存储选位建模[J]. 计算机应用, 2018, 38(4): 1189-1194, 1206. |
Wei Yaru, Zhu Jin. Modeling of Twin Rail-mounted Gantry Scheduling and Container Slot Selection in Automated Terminal[J]. Journal of Computer Applications, 2018, 38(4): 1189-1194, 1206. | |
10 | 初良勇, 李淑娟, 阮志毅. 多箱区多场桥调度优化模型及算法实现[J]. 上海海事大学学报, 2017, 38(1): 37-42. |
Chu Liangyong, Li Shujuan, Ruan Zhiyi. Scheduling Optimization Model and Algorithm Implementation of Multiple Container Blocks with Multiple Yard Cranes[J]. Journal of Shanghai Maritime University, 2017, 38(1): 37-42. | |
11 | 蒋静静. 基于深度强化学习的离散型制造企业车间动态调度研究[D]. 西安: 西安理工大学, 2020. |
Jiang Jingjing. Research on Jobshop Dynamic Scheduling of Discrete Manufacturig Enterprises Based on Deep Reinforcement Learning[D]. Xi'an: Xi'an University of Technology, 2020. | |
12 | 王凌, 潘子肖. 基于深度强化学习与迭代贪婪的流水车间调度优化[J]. 控制与决策, 2021, 36(11): 2609-2617. |
Wang Ling, Pan Zixiao. Scheduling Optimization for Flow-shop Based on Deep Reinforcement Learning and Iterative Greedy Method[J]. Control and Decision, 2021, 36(11): 2609-2617. | |
13 | Wang Libing, Hu Xin, Wang Yin, et al. Dynamic Job-shop Scheduling in Smart Manufacturing Using Deep Reinforcement Learning[J]. Computer Networks, 2021, 190: 107969. |
14 | Luo Shu, Zhang Linxuan, Fan Yushun. Dynamic Multi-objective Scheduling for Flexible Job Shop by Deep Reinforcement Learning[J]. Computers and Industrial Engineering, 2021, 159: 107489. |
15 | Han Baoan, Yang Jianjun. Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN[J]. IEEE Access, 2020, 8: 186474-186495. |
16 | Hu Liang, Liu Zhenyu, Hu Weifei, et al. Petri-net-based Dynamic Scheduling of Flexible Manufacturing System Via Deep Reinforcement Learning with Graph Convolutional Network[J]. Journal of Manufacturing Systems, 2020, 55: 1-14. |
17 | Wang Xuelin, Shi Hankun. Research on Intelligent Optimization of Bulk Cargo Terminal Control System[J]. Journal of Physics: Conference Series, 2020, 1601(5): 052044. |
18 | Alan Dávila de León, Lalla-Ruiz Eduardo, Melián-Batista Belén, et al. A Machine Learning-based System for Berth Scheduling at Bulk Terminals[J]. Expert Systems with Applications, 2017, 87: 170-182. |
19 | 高天佑. 输出型煤炭码头卸车生产调度优化模型和方法研究[D]. 武汉: 武汉理工大学, 2014. |
Gao Tianyou. Optimization Models and Algorithms for Unloading Scheduling of the Export Coal Terminals[D]. Wuhan: Wuhan University of Technology, 2014. | |
20 | Fotuhi F, Huynh N, Vidal J M, et al. Modeling Yard Crane Operators as Reinforcement Learning Agents[J]. Research in Transportation Economics, 2013, 42(1): 3-12. |
21 | 杨奔, 王炜晔, 赵婉婷, 等. 基于DQN的动态深度多分支搜索自动配载算法[J]. 计算机工程, 2020, 46(8): 313-320. |
Yang Ben, Wang Weiye, Zhao Wanting, et al. DQN-based Automatic Stowage Planning Algorithm Using Dynamic Depth Multi-branch Search[J]. Computer Engineering, 2020, 46(8): 313-320. | |
22 | Shen Yifan, Zhao Ning, Xia Mengjue, et al. A Deep Q-learning Network for Ship Stowage Planning Problem[J]. Polish Maritime Research, 2017, 24(S3): 102-109. |
23 | Li Changan, Wu Sirui, Li Zhan, et al. Intelligent Scheduling Method for Bulk Cargo Terminal Loading Process Based on Deep Reinforcement Learning[J]. Electronics, 2022, 11(9): 1390. |
[1] | An Jing, Si Guangya, Zhang Lei. Strategy Optimization Method of Multi-dimension Projection Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(1): 39-49. |
[2] | Junqiang Lin, Hongjun Wang, Xiangjun Zou, Po Zhang, Chengen Li, Yipeng Zhou, Shujie Yao. Obstacle Avoidance Path Planning and Simulation of Mobile Picking Robot Based on DPPO [J]. Journal of System Simulation, 2023, 35(8): 1692-1704. |
[3] | Jiayi Liu, Gang Wang, Qiang Fu, Xiangke Guo, Siyuan Wang. Intelligent Air Defense Task Assignment Based on Assignment Strategy Optimization Algorithm [J]. Journal of System Simulation, 2023, 35(8): 1705-1716. |
[4] | Laiyi Yang, Jing Bi, Haitao Yuan. Intelligent Path Planning for Mobile Robots Based on SAC Algorithm [J]. Journal of System Simulation, 2023, 35(8): 1726-1736. |
[5] | Fei Ding, Yuchen Sha, Ying Hong, Xiao Kuai, Dengyin Zhang. Joint Optimization Strategy of Computing Offloading and Edge Caching for Intelligent Connected Vehicles [J]. Journal of System Simulation, 2023, 35(6): 1203-1214. |
[6] | Yuxuan Dai, Chenggang Cui. Deep Reinforcement Learning-Based Control Strategy for Boost Converter [J]. Journal of System Simulation, 2023, 35(5): 1109-1119. |
[7] | Haotian Xu, Long Qin, Junjie Zeng, Yue Hu, Qi Zhang. Research Progress of Opponent Modeling Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 671-694. |
[8] | Jiajie Shi, Peng Yang, Yannan Pi. Machine Learning-based Simulation Research of On-line Subway Pedestrian Flow Control [J]. Journal of System Simulation, 2023, 35(2): 386-395. |
[9] | Ju Xiang, Su Shengchao, Xu Chaojie, He Beibei. Task Scheduling for Internet of Vehicles Based on Deep Reinforcement Learning in Edge Computing [J]. Journal of System Simulation, 2023, 35(12): 2550-2559. |
[10] | Sen Zhang, Mengyan Zhang, Jingping Shao, Jiexin Pu. Multi-UAVs 3D Path Planning Method Based on Random Strategy Search [J]. Journal of System Simulation, 2022, 34(6): 1286-1295. |
[11] | Lingjia Ni, Xiaoxia Huang, Hongga Li, Zibo Zhang. Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(6): 1353-1366. |
[12] | Hongwei Wang, Peng Yang. Research on Optimization of Airport Cargo Business Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(3): 651-660. |
[13] | Qirui Li, Xinyi Peng. Job Scheduling and Simulation in Cloud Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2022, 34(2): 258-268. |
[14] | Gao Ang, Dong Zhiming, Zhang Guohui, Liang Tao, Guo Qisheng. Research on Generation Technology of Computer Generated Force in LVC Training System [J]. Journal of System Simulation, 2021, 33(3): 745-752. |
[15] | Zeng Bi, Fang Xiao, Kong Deshuai, Song Xiangxiang, Jia Zhengxuan, Lin Tingyu. A Data-Driven Modeling Method for Game Adversity Agent [J]. Journal of System Simulation, 2021, 33(12): 2838-2845. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||