Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 424-435.doi: 10.16182/j.issn1004731x.joss.23-1190
• Papers • Previous Articles
Du Yuanhao1, Geng Xiuli1,2, Xu Chengzhi3, Liu Yinhua3
Received:
2023-09-27
Revised:
2023-10-23
Online:
2025-02-14
Published:
2025-02-10
Contact:
Geng Xiuli
CLC Number:
Du Yuanhao, Geng Xiuli, Xu Chengzhi, Liu Yinhua. Point Cloud Registration Method Based on Improved Grey Wolf Algorithm and Adaptive Splitting KD-Tree[J]. Journal of System Simulation, 2025, 37(2): 424-435.
Table 1
Information of Stanford public point cloud dataset
点云模型 | 点云类别 | 点的数量 | 扫描次数 | 扫描仪 | 分辨率/mm |
---|---|---|---|---|---|
Bunny | Bunny000 | 40 256 | 10 | Cyberware 3030 MS | x轴:0.100 y轴:0.002 z轴:0.003 |
Bunny045 | 40 097 | ||||
Dragon | DragonStandRight_0 | 41 841 | 70 | Cyberware 3030 MS + spacetime analysis | |
DragonStandRight_48 | 22 092 | ||||
Happy Buddha | Happy Buddha_0 | 78 056 | 60 | Cyberware 3030 MS + spacetime analysis | |
Happy Buddha_48 | 69 158 | ||||
Drill bit | Drillbit_0 | 4 220 | 12 | Cyberware 3030 MS | |
Drillbit_60 | 4 223 |
Table 3
Results of the first 20 iterations of different algorithms
迭代次数 | GWO | PSO | SSA | IGWO |
---|---|---|---|---|
1 | 2.590 2 | 3.175 1 | 3.058 3 | 4.823 7 |
2 | 2.255 7 | 2.016 4 | 2.718 0 | 2.910 4 |
3 | 0.767 1 | 1.047 5 | 2.644 1 | 2.400 1 |
4 | 0.767 1 | 0.865 4 | 0.644 1 | 0.938 9 |
5 | 0.767 1 | 0.678 3 | 0.425 7 | 0.430 9 |
... | ||||
15 | 0.178 7 | 0.090 8 | 0.348 0 | 0.087 3 |
16 | 0.178 7 | 0.090 8 | 0.348 0 | 0.087 3 |
17 | 0.178 7 | 0.090 8 | 0.348 0 | 0.087 3 |
18 | 0.178 7 | 0.077 9 | 0.348 0 | 0.083 3 |
19 | 0.178 7 | 0.077 9 | 0.348 0 | 0.083 3 |
20 | 0.178 7 | 0.077 9 | 0.348 0 | 0.083 3 |
Table 4
Statistics of registration results of different algorithms
数据种类 | 模型 | RMSE | |
---|---|---|---|
Bunny | GWO | 0.038 5 | [0.114, -4.96, 0.187, 0.04, 0.029] |
SSA | 0.103 5 | [-5, -5, -10.41, 0.031, -0.005, 0.046] | |
PSO | 0.017 8 | [-3.988, 1.098, 0.236, 0.028, -0.001, 0.02] | |
IGWO | 0.013 0 | [-5, -0.704, -11.723, 0.03, -0.006, 0.047] | |
Dragon | GWO | 0.745 3 | [5, 0.986, 41.33, -0.004, 0.032, -0.106] |
SSA | 0.086 1 | [-5, -4.032, 40.979, -0.007, 0.03, -0.105] | |
PSO | 0.071 1 | [-1.328, -0.371, 20.59, -0.009, 0.01, -0.07] | |
IGWO | 0.084 5 | [-3.118, 0.649, 43.32, -0.013, 0.034, -0.11] | |
Happy Buddha | GWO | 0.071 2 | [-1.537, -5, 4.033, 0.007, 0.012, -0.004] |
SSA | 0.071 2 | [-1.274, -5, 3.891, 0.008, 0.01, -0.004] | |
PSO | 0.097 1 | [3.98, 4.78, 79.64, -0.002, 0.133, -0.112] | |
IGWO | 0.070 3 | [3.58, -0.975, 5.29, 0.017, 0.008, -0.004] | |
Drill bit | GWO | 0.094 1 | [-0.21, -0.195, 3.404, 0.013, 0.002, -0.001] |
SSA | 0.094 7 | [3.171, -4.251, 0.516, 0.019, 0.001, 0.007] | |
PSO | 0.093 0 | [-5, 0.068, -0.921, 0.001, -0.001, 0.027] | |
IGWO | 0.085 9 | [1.684, -0.423, 1.91, 0.017, 0.001, 0.003] |
Table 5
Statistics of registration results of all models under multi-target point clouds
配准对象 | 模型 | RMSE | |
---|---|---|---|
O→A | GWO | 3.43×10-4 | [-75.24, -78.93, -60.48, 35.71, 26.99, 33.78] |
SSA | 1.04×10-4 | [-69.08, -78.47, -74.96, 40, 34.81, 33.40] | |
PSO | 8.09×10-5 | [-14.58, -68.9, -121.6, 40, 10.3, 22.54] | |
IGWO | 6.06×10-5 | [-79.01, -75.15, -59.4, 39.82, 39.39, 39.41] | |
O→B | GWO | 1.32×10-4 | [-23.14, -20.46, -28.49, 19.44, 13.18, 17.77] |
SSA | 2.77×10-4 | [-30.98, -23.48, -23.50, 37.46, 33.54, 4.62] | |
PSO | 8.52×10-5 | [-25.12, -22.01, -27.6, 21.8, 18.3, 12.75] | |
IGWO | 4.94×10-5 | [-25.02, -19.98, -30.28, 20.04, 20.17, 20.43] | |
O→C | GWO | 3.23×10-4 | [-54.71, -39.79, -97, 7, -5.72, 3.78, 11.32] |
SSA | 7.52×10-4 | [-62.13, -37.87, -95.18, 11.16, 11.17, 16.14] | |
PSO | 4.94×10-5 | [-58.1, -39.32, -99.46, 3.64, 8.14, 10.68] | |
IGWO | 1.12×10-5 | [-59.27, -40.34, -100.42, 8.99, 9.60, 8.90] |
1 | 陈勇刚, 张沅, 杨力, 等. 一种基于实测点云数据的壁板类零件修配加工路径计算方法[J]. 南京航空航天大学学报, 2023, 55(3): 444-451. |
Chen Yonggang, Zhang Yuan, Yang Li, et al. A Repairing Method of Wall Plate Parts Based on Measured Point Cloud[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 444-451. | |
2 | 魏效玲, 孟艺, 孙秀军. 损伤零件点云模型配准的ICP算法[J]. 制造技术与机床, 2020(5): 118-121. |
Wei Xiaoling, Meng Yi, Sun Xiujun. ICP Algorithm for Registration of Point Cloud Model of Damaged Parts[J]. Manufacturing Technology & Machine Tool, 2020(5): 118-121. | |
3 | Besl P J, Mckay N D. Method for Registration of 3-D Shapes[C]//Sensor Fusion IV: Control Paradigms and Data Structures. Bellingham: SPIE, 1992: 586-606. |
4 | 刘贺伟, 卿兆波, 黄加俊. 基于改进ICP的帧间匹配算法研究[J]. 现代电子技术, 2023, 46(8): 73-78. |
Liu Hewei, Zhaobo Qing, Huang Jiajun. Research on Inter-frame Matching Algorithm Based on Improved ICP[J]. Modern Electronics Technique, 2023, 46(8): 73-78. | |
5 | He Ying, Liang Bin, Yang Jun, et al. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features[J]. Sensors, 2017, 17(8): 1862. |
6 | 王文博, 田茂义, 俞家勇, 等. 改进的迭代最近点点云配准方法[J]. 激光与光电子学进展, 2022, 59(2): 382-391. |
Wang Wenbo, Tian Maoyi, Yu Jiayong, et al. Improved Iterative Nearest Point Point Cloud Alignment Method[J]. Laser & Optoelectronics Progress, 2022, 59(2): 382-391. | |
7 | Wu Zongze, Chen Hongchen, Du Shaoyi, et al. Correntropy Based Scale ICP Algorithm for Robust Point Set Registration[J]. Pattern Recognition, 2019, 93: 14-24. |
8 | 周丽敏, 卜昆, 董一巍, 等. 基于简化点云带动的涡轮叶片快速配准技术[J]. 计算机集成制造系统, 2012, 18(5): 988-992. |
Zhou Limin, Bu Kun, Dong Yiwei, et al. Rapid Registration Technology of Turbine Blade Based on Simplified Cloud Data[J]. Computer Integrated Manufacturing Systems, 2012, 18(5): 988-992. | |
9 | Shi Xiaojing, Liu Tao, Han Xie. Improved Iterative Closest Point(ICP) 3D Point Cloud Registration Algorithm Based on Point Cloud Filtering and Adaptive Fireworks for Coarse Registration[J]. International Journal of Remote Sensing, 2020, 41(8): 3197-3220. |
10 | Liu Hai, Wang Shulin, Zhao Donghong. Initial Alignment for Point Cloud Registration by Improved Differential Evolution Algorithm[J]. Optik, 2021, 243: 166856. |
11 | Zhan Xu, Cai Yong, Li Heng, et al. A Point Cloud Registration Algorithm Based on Normal Vector and Particle Swarm Optimization[J]. Measurement and Control, 2020, 53(3/4): 265-275. |
12 | Feng Yaqing, Tang Jialin, Su Binghua, et al. Point Cloud Registration Algorithm Based on the Grey Wolf Optimizer[J]. IEEE Access, 2020, 8: 143375-143382. |
13 | Voronin Sergei, Makovetskii Artyom, Kober Vitaly, et al. ICP Algorithm Based on Stochastic Approach[C]//Applications of Digital Image Processing XLIV. Bellingham: SPIE, 2021: 118421P. |
14 | 宁小娟, 李春旭, 王嘉豪, 等. 基于关键点精确配对的点云曲面匹配方法[J]. 系统仿真学报, 2023, 35(6): 1169-1182. |
Ning Xiaojuan, Li Chunxu, Wang Jiahao, et al. Point Cloud Surface Matching Method Based on Precise Matching of Critical Point[J]. Journal of System Simulation, 2023, 35(6): 1169-1182. | |
15 | Mirjalili Seyedali, Seyed Mohammad Mirjalili, Lewis Andrew. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
16 | 郭现峰, 李浩华, 魏金玉. 基于 Fibonacci 变换和改进 Logistic-Tent混沌映射的图像加密方案[J]. 吉林大学学报(工学版), 2023, 53(7): 2115-2120. |
Guo Xianfeng, Li Haohua, Wei Jinyu. Image Encryption Scheme Based on Fibonacci Transform and Improved Logistic-Tent Chaotic Map[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2115-2120. | |
17 | 曹梦龙, 赵文彬, 陈志强. 融合粒子群算法与改进灰狼算法的机器人路径规划[J]. 系统仿真学报, 2023, 35(8): 1768-1775. |
Cao Menglong, Zhao Wenbin, Chen Zhiqiang. Robot Path Planning by Fusing Particle Swarm Algorithm and Improved Grey Wolf Algorithm[J]. Journal of System Simulation, 2023, 35(8): 1768-1775. | |
18 | Teng Zhijun, Jinling Lü, Guo Liwen. An Improved Hybrid Grey Wolf Optimization Algorithm[J]. Soft Computing, 2019, 23(15): 6617-6631. |
19 | Yang Xinshe. Flower Pollination Algorithm for Global Optimization[C]//Unconventional Computation and Natural Computation. Berlin: Springer Berlin Heidelberg, 2012: 240-249. |
20 | Bahmani B, Sun W C. A Kd-tree-accelerated Hybrid Data-driven/model-based Approach for Poroelasticity Problems with Multi-fidelity Multi-physics Data[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 382: 113868. |
21 | Yang Jiaqi, Cao Zhiguo, Zhang Qian. A Fast and Robust Local Descriptor for 3D Point Cloud Registration[J]. Information Sciences, 2016, 346-347: 163-179. |
22 | Jain Meetu, Saihjpal Vibha, Singh Narinder, et al. An Overview of Variants and Advancements of PSO Algorithm[J]. Applied Sciences, 2022, 12(17): 8392. |
23 | Xue Jiankai, Shen Bo. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. |
[1] | Li Weigang, Zou Shaofeng, Wang Yongqiang, Yu Chuxiang. Intensity-based Feature Filtering for LiDAR-based SLAM [J]. Journal of System Simulation, 2025, 37(2): 392-403. |
[2] | Wang Haichao, Yin Yong, Jing Qianfeng, Cong Lin. Estimation of the Berthing Parameter of Unmanned Surface Vessels Based on 3D LiDAR [J]. Journal of System Simulation, 2024, 36(8): 1737-1748. |
[3] | Li Weigang, Yu Chuxiang, Wang Yongqiang, Zou Shaofeng. Real-time Lidar SLAM Algorithm Based on Distribution Optimal Registration [J]. Journal of System Simulation, 2024, 36(11): 2566-2577. |
[4] | Xu Yuanxing, Zhang Mengjian, Wang Deguang. Chaotic-encode Quantum PSO Algorithm for Flexible Job-shop Scheduling Problem [J]. Journal of System Simulation, 2024, 36(10): 2371-2382. |
[5] | Yuan Zhang, Haoyu Han, Xie Han, Jiaxu Fu. Point Cloud Registration Method Based on Improved Covariance Matrix Descriptor [J]. Journal of System Simulation, 2023, 35(5): 979-986. |
[6] | Sun Shuifa, Li Zhun, Xia Kun, Shi Yunfei, Yang Jiquan, Dong Fangmin. Variable Scale Point Cloud Registration Algorithm [J]. Journal of System Simulation, 2018, 30(7): 2465-2474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||