Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (2): 413-423.doi: 10.16182/j.issn1004731x.joss.23-1125
• Papers • Previous Articles
Cui Huanhuan, Guan Lihe
Received:
2023-09-12
Revised:
2023-10-22
Online:
2025-02-14
Published:
2025-02-10
Contact:
Guan Lihe
CLC Number:
Cui Huanhuan, Guan Lihe. A Hybrid Heuristic Algorithm for Solving the Green VRP with Priority Delivery[J]. Journal of System Simulation, 2025, 37(2): 413-423.
Table 1
Explanation of notations
符号 | 含义 |
---|---|
需要优先配送的客户集合 | |
非优先只取不送的客户集合 | |
非优先有取有送的客户集合 | |
客户集合,包括配送中心0,且客户数为 | |
用于优先配送客户的车辆集合 | |
用于非优先配送客户的车辆集合 | |
配送车辆集合,即 | |
第 | |
客户 | |
车辆最大载重量 | |
客户 | |
客户 | |
车辆 | |
车辆 | |
车辆 | |
配送中心需配送货物总量,且 | |
配送中心需取回货物总量,且 | |
车辆 | |
车辆空载时的油耗率 | |
车辆满载时的油耗率 | |
司机薪资的每公里单价 | |
燃油成本单价 | |
车辆成本单价 |
Table 2
Explanation of notations in algorithm
符号 | 含义 |
---|---|
优先配送客户路径集合 | |
非优先只取不送客户路径集合 | |
非优先有取有送客户路径集合 | |
记路线 | |
路线 | |
破坏算子集合 | |
修复算子集合 | |
删除列表 | |
删除列表长度 | |
初始温度 | |
终止温度 | |
降温次数 | |
第m次降温后的温度 | |
算子 | |
轮盘赌参数 | |
每个温度下的迭代次数 | |
最大迭代次数 | |
当前最优解 | |
当前解 | |
温度下降率 | |
算子 | |
算子 | |
新解优于当前最优解时算子得分 | |
新解劣于当前最优解但优于当前解时算子得分 | |
新解比当前解差但被接受时算子得分 |
Table 3
Results of two distribution strategy on Solomon instances
算例 | TSD(单独配送) | SA-ALNS(优先配送) | 相对偏差/% | ||||||
---|---|---|---|---|---|---|---|---|---|
(C1, Z1) | (C2, σ1) | (Z2, σ2) | (C1, Z1) | (C2, σ1) | (Z2, σ2) | RE1 | RE2 | RE3 | |
Rdp101 | (16, 18 862) | (16.1, 0.32) | (19 158, 241) | (14, 17 725) | (14.2, 0.42) | (17 949, 148) | 14.29 | 6.41 | 6.74 |
Rdp102 | (16, 18 990) | (16.3, 0.48) | (19 193, 164) | (14, 17 945) | (14.4, 0.52) | (18 239, 110) | 14.29 | 5.82 | 5.23 |
Rdp103 | (16, 18 830) | (16.5, 0.53) | (19 171, 261) | (14, 17 563) | (14, 0) | (17 670, 96) | 14.29 | 7.21 | 8.50 |
Rdp104 | (16, 18 866) | (17.1, 0.57) | (19 659, 349) | (14, 18 150) | (14.7, 0.48) | (18 312, 119) | 14.29 | 3.95 | 7.35 |
Rdp105 | (16, 18 771) | (16.6, 0.52) | (19 367, 342) | (15, 17 965) | (15, 0) | (18 069, 72) | 6.67 | 4.49 | 7.19 |
Rdp106 | (17, 18 877) | (17.3, 0.48) | (19 489, 385) | (14, 18 172) | (14.5, 0.53) | (18 330, 125) | 21.43 | 3.88 | 6.32 |
Rdp107 | (17, 19 338) | (17.1, 0.32) | (19 807, 246) | (15, 18 493) | (15, 0) | (18 669, 102) | 13.33 | 4.57 | 6.09 |
Rdp108 | (16, 18 783) | (16.3, 0.48) | (19 137, 211) | (14, 17 882) | (14.5, 0.53) | (18 220, 273) | 14.29 | 5.03 | 5.03 |
Rdp109 | (17, 19 271) | (17, 0) | (19 666, 204) | (15, 18 333) | (15, 0) | (18 374, 44) | 13.33 | 5.12 | 7.03 |
Rdp110 | (17, 19 778) | (17.1, 0.32) | (20 038, 182) | (15, 18 217) | (15, 0) | (18 491, 106) | 13.33 | 8.57 | 8.37 |
Rdp111 | (17, 19 539) | (18, 0.47) | (20 082, 259) | (15, 18 413) | (15, 0) | (18 540, 94) | 13.33 | 6.11 | 8.32 |
Rdp112 | (17, 19 317) | (17.4, 0.52) | (19 948, 298) | (15, 18 050) | (15, 0) | (18 290, 202) | 13.33 | 7.02 | 9.06 |
平均值 | (16.5, 19 102) | (16.9, 0.42) | (19 560, 262) | (14.5, 18 076) | (14.7, 0.21) | (18 263, 124) | 13.85 | 5.68 | 7.10 |
Cdp101 | (19, 20 810) | (19.6, 0.52) | (21 043, 147) | (15, 19 503) | (15.9, 0.32) | (19 781, 162) | 26.67 | 6.70 | 6.38 |
Cdp102 | (19, 22 149) | (19.5, 0.53) | (22 339, 195) | (14, 20 710) | (14, 0) | (20 865, 147) | 35.71 | 6.95 | 7.07 |
Cdp103 | (19, 22 763) | (19, 0) | (23 042, 217) | (16, 20 859) | (16, 0) | (20 954, 67) | 18.75 | 9.13 | 9.97 |
Cdp104 | (20, 21 247) | (20, 0) | (21 301, 24) | (15, 20 532) | (15.9, 0.32) | (20 904, 380) | 33.33 | 3.48 | 1.90 |
Cdp105 | (19, 21 696) | (19.1, 0.32) | (21 762, 96) | (14, 21 157) | (14, 0) | (21 367, 113) | 35.71 | 2.54 | 1.85 |
Cdp106 | (20, 22 439) | (20, 0) | (22 439, 0) | (14, 21 108) | (14, 0) | (21 163, 64) | 42.86 | 6.30 | 6.03 |
Cdp107 | (20, 21 976) | (20, 0) | (22 757, 275) | (15, 21 092) | (15.6, 0.52) | (21 198, 84) | 33.33 | 4.19 | 7.36 |
Cdp108 | (19, 21 967) | (19.3, 0.48) | (22 060, 65) | (14, 20 508) | (14.4, 0.52) | (21 153, 259) | 35.71 | 7.12 | 4.29 |
Cdp109 | (19, 21 668) | (19.7, 0.48) | (21 819, 92) | (16, 20 552) | (16, 0) | (20 653, 73) | 18.75 | 5.43 | 5.64 |
平均值 | (19.3, 21 857) | (19.6, 0.26) | (22 063, 123) | (14.8, 20 669) | (15.1, 0.19) | (20 893, 150) | 31.20 | 5.76 | 5.61 |
RCdp101 | (18, 23 336) | (18, 0) | (23 394, 69) | (14, 22 186) | (14, 0) | (22 385, 264) | 28.57 | 5.18 | 4.51 |
RCdp102 | (18, 23 678) | (18, 0) | (23 740, 37) | (14, 20 901) | (14, 0) | (21 236, 170) | 28.57 | 13.29 | 11.79 |
RCdp103 | (18, 25 139) | (18, 0) | (25 282, 86) | (14, 22 019) | (14, 0) | (22 174, 159) | 28.57 | 14.17 | 14.02 |
RCdp104 | (18, 23 887) | (18, 0) | (24 060, 121) | (14, 21 069) | (14.5, 0.53) | (21 420, 288) | 28.57 | 13.37 | 12.32 |
RCdp105 | (18, 23 635) | (18, 0) | (24 061, 279) | (14, 20 715) | (14, 0) | (20 913, 86) | 28.57 | 14.09 | 15.06 |
RCdp106 | (18, 22 866) | (18.1, 0.32) | (23 438, 408) | (14, 20 864) | (14.6, 0.52) | (21 195, 309) | 28.57 | 9.59 | 10.58 |
RCdp107 | (18, 24 685) | (18.2, 0.42) | (25 243, 360) | (14, 20 406) | (14, 0) | (20 525, 87) | 28.57 | 20.97 | 22.99 |
RCdp108 | (17, 23 488) | (17.9, 0.32) | (23 922, 295) | (14, 21 819) | (14, 0) | (21 932, 76) | 21.43 | 7.65 | 9.07 |
平均值 | (17.9, 23 839) | (18, 0.13) | (24 142, 207) | (14, 21 247) | (14.1, 0.13) | (21 472, 180) | 27.68 | 12.29 | 12.54 |
总均值 | (17.8, 21 264) | (18, 0.29) | (21 601, 204) | (14.4, 19 756) | (14.7, 0.18) | (19 964, 148) | 23.05 | 7.53 | 8.14 |
Table 4
Results of two algorithm on CMTX instances
算例 | n | HH-ILS[ | SA-ALNS | 相对偏差(%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(C1, Z1) | (C2, σ1) | (Z2, σ2) | (C1, Z1) | (C2, σ1) | (Z2, σ2) | RE1 | RE2 | RE3 | ||
平均值 | (17.9, 23 517) | (19, 0.9) | (24 863, 954) | (14.5, 20 110) | (14.6, 0.2) | (20 411, 205) | 22.87 | 18.02 | 23.20 | |
CMTX1 | 50 | (8, 11 501) | (8.5, 0.7) | (11 966, 402) | (7, 9 332) | (7, 0) | (9 462, 108) | 14.29 | 23.24 | 26.47 |
CMTX2 | 75 | (13, 14 030) | (14.1, 0.7) | (15 606, 623) | (11, 12 420) | (11.3, 0.5) | (12 596, 148) | 18.18 | 12.96 | 23.90 |
CMTX3 | 100 | (16, 21 872) | (17.8, 1.6) | (23 290, 994) | (12, 17 672) | (12.1, 0.3) | (17 710, 43) | 33.33 | 23.77 | 31.51 |
CMTX4 | 150 | (22, 28 793) | (23.3, 1.2) | (29 769, 1 115) | (19, 24 089) | (19, 0) | (24 236, 87) | 15.79 | 19.53 | 22.83 |
CMTX5 | 199 | (32, 38 297) | (32.8, 0.9) | (41 115, 1 488) | (25, 32 737) | (25, 0) | (33 010, 154) | 28.00 | 16.98 | 24.56 |
CMTX6 | 50 | (9, 12 133) | (10, 0.7) | (12 878, 547) | (7, 9 301) | (7, 0) | (9 301, 0) | 28.57 | 30.44 | 38.46 |
CMTX7 | 75 | (15, 15 100) | (16.4, 1.1) | (15 939, 604) | (11, 12 562) | (11.1, 0.3) | (12 769, 84) | 36.36 | 20.21 | 24.83 |
CMTX8 | 100 | (18, 22 980) | (19.1, 0.7) | (24 120, 970) | (13, 17 270) | (13, 0) | (17 408, 118) | 38.46 | 33.07 | 38.56 |
CMTX9 | 150 | (22, 29 050) | (23.9, 0.9) | (30 139, 687) | (19, 23 932) | (19, 0) | (24 062, 100) | 15.79 | 21.38 | 25.25 |
CMTX10 | 199 | (33, 40 029) | (33.6, 0.7) | (41 740, 1 519) | (25, 32 683) | (25.4, 0.5) | (33 252, 263) | 32.00 | 22.48 | 25.53 |
CMTX11 | 120 | (16, 27 745) | (16.9, 0.9) | (28 421, 516) | (14, 25 949) | (14.3, 0.5) | (26 409, 442) | 14.29 | 6.92 | 7.62 |
CMTX12 | 100 | (15, 20 963) | (16.3, 0.9) | (22 429, 1 349) | (13, 19 143) | (13.3, 0.5) | (20 037, 529) | 15.38 | 9.51 | 11.94 |
CMTX13 | 120 | (16, 26 295) | (17.4, 0.7) | (28 856, 1 124) | (14, 25 850) | (14.4, 0.5) | (26 293, 383) | 14.29 | 1.72 | 9.75 |
CMTX14 | 100 | (15, 20 456) | (15.7, 0.7) | (21 818, 1 414) | (13, 18 593) | (13, 0) | (19 215, 412) | 15.38 | 10.02 | 13.54 |
Table 5
Results of destruction operators in SA-ALNS
算例 | SA-ALNS | SA-ALNS-H1 | SA-ALNS-H2 | SA-ALNS-H3 | SA-ALNS-H4 | SA-ALNS-H5 |
---|---|---|---|---|---|---|
Z2 | ∆Z2-H1 | ∆Z2-H2 | ∆Z2-H3 | ∆Z2-H4 | ∆Z2-H5 | |
平均值 | +354 | +240 | +399 | +227 | +200 | |
Rdp101 | 17 949 | +22 | +9 | +161 | +21 | +93 |
Rdp103 | 17 670 | +71 | +73 | +90 | +56 | +17 |
Rdp105 | 18 069 | +145 | +16 | +230 | +48 | +2 |
Cdp102 | 20 865 | +673 | +334 | +400 | +273 | +302 |
Cdp103 | 20 954 | +276 | +67 | +150 | +119 | +104 |
Cdp105 | 21 367 | +336 | +117 | +145 | +146 | +98 |
RCdp103 | 22 174 | +16 | +45 | +399 | +9 | +13 |
RCdp104 | 21 420 | +1 071 | +1 040 | +1 419 | +879 | +676 |
RCdp105 | 20 913 | +577 | +459 | +596 | +491 | +496 |
1 | 周鲜成, 周开军, 王莉, 等. 物流配送中的绿色车辆路径模型与求解算法研究综述[J]. 系统工程理论与实践, 2021, 41(1): 213-230. |
Zhou Xiancheng, Zhou Kaijun, Wang Li, et al. Review of Green Vehicle Routing Model and Its Algorithm in Logistics Distribution[J]. Systems Engineering-Theory & Practice, 2021, 41(1): 213-230. | |
2 | Erdoğan Sevgi, Miller-Hooks E. A Green Vehicle Routing Problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(1): 100-114. |
3 | Ferreira K M, Queiroz T A, Toledo F M B. An Exact Approach for the Green Vehicle Routing Problem with Two-dimensional Loading Constraints and Split Delivery[J]. Computers & Operations Research, 2021, 136: 105452. |
4 | 胡蓉, 陈文博, 钱斌, 等. 学习型蚁群算法求解绿色多车场车辆路径问题[J]. 系统仿真学报, 2021, 33(9): 2095-2108. |
Hu Rong, Chen Wenbo, Qian Bin, et al. Learning Ant Colony Algorithm for Green Multi-depot Vehicle Routing Problem[J]. Journal of System Simulation, 2021, 33(9): 2095-2108. | |
5 | Poonthalir G, Nadarajan R. A Fuel Efficient Green Vehicle Routing Problem with Varying Speed Constraint (F-GVRP)[J]. Expert Systems with Applications, 2018, 100: 131-144. |
6 | 高飞. 不确定因素下配送路径优化问题研究[D]. 北京: 北京交通大学, 2019. |
Gao Fei. Research on Distribution Routing Optimization Problems with Uncertain Factor[D]. Beijing: Beijing Jiaotong University, 2019. | |
7 | Majidi S, Hosseini-Motlagh S M, Ignatius J. Adaptive Large Neighborhood Search Heuristic for Pollution-routing Problem with Simultaneous Pickup and Delivery[J]. Soft Computing, 2018, 22(9): 2851-2865. |
8 | Foroutan R A, Rezaeian J, Mahdavi I. Green Vehicle Routing and Scheduling Problem with Heterogeneous Fleet Including Reverse Logistics in the Form of Collecting Returned Goods[J]. Applied Soft Computing, 2020, 94: 106462. |
9 | Qi Rui, Li Junqing, Wang Juan, et al. QMOEA: A Q-learning-based Multiobjective Evolutionary Algorithm for Solving Time-dependent Green Vehicle Routing Problems with Time Windows[J]. Information Sciences, 2022, 608: 178-201. |
10 | Niu Yunyun, Yang Zehua, Wen Rong, et al. Solving the Green Open Vehicle Routing Problem Using a Membrane-inspired Hybrid Algorithm[J]. Sustainability, 2022, 14(14): 8661. |
11 | Majidi S, Hosseini-Motlagh S M, Yaghoubi S, et al. Fuzzy Green Vehicle Routing Problem with Simultaneous Pickup-delivery and Time Windows[J]. Rairo-Operations Research, 2017, 51(4): 1151-1176. |
12 | Olgun B, Koç C, Altıparmak F. A Hyper Heuristic for the Green Vehicle Routing Problem with Simultaneous Pickup and Delivery[J]. Computers & Industrial Engineering, 2021, 153: 107010. |
13 | Polat O, Kalayci C B, Topaloğlu D. Modelling and Solving the Milk Collection Problem with Realistic Constraints[J]. Computers & Operations Research, 2022, 142: 105759. |
14 | Wang Zheng, Li Ying, Hu Xiangpei. A Heuristic Approach and a Tabu Search for the Heterogeneous Multi-type Fleet Vehicle Routing Problem with Time Windows and an Incompatible Loading Constraint[J]. Computers & Industrial Engineering, 2015, 89: 162-176. |
15 | Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, 1983, 220(4598): 671-680. |
16 | 贺琪, 官礼和, 崔焕焕. 硬时间窗VRP的混合变邻域禁忌搜索算法[J]. 计算机工程与应用, 2023, 59(13): 82-91. |
He Qi, Guan Lihe, Cui Huanhuan. Hybrid Variable Neighborhood Tabu Search Algorithm for Vehicle Routing Problem with Hard Time Window[J]. Computer Engineering and Applications, 2023, 59(13): 82-91. | |
17 | 李珺, 段钰蓉, 郝丽艳, 等. 混合优化算法求解同时送取货车辆路径问题[J]. 计算机科学与探索, 2022, 16(7): 1623-1632. |
Li Jun, Duan Yurong, Hao Liyan, et al. Hybrid Optimization Algorithm for Vehicle Routing Problem with Simultaneous Delivery-pickup[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(7): 1623-1632. | |
18 | Wang Hsiaofan, Chen Yingyen. A Genetic Algorithm for the Simultaneous Delivery and Pickup Problems with Time Window[J]. Computers and Industrial Engineering, 2012, 62(1): 84-95. |
[1] | Xu Qiang, Xu Jianlei, Hu Yanhai, Chen Haihui, Zhang Xing, Xing Zhaohui. Trajectory Optimization of Robotic Arm Based on Improved Simulated Annealing Genetic Algorithm [J]. Journal of System Simulation, 2025, 37(2): 404-412. |
[2] | Zhang Zhenli, Wang Yongzhuang, Qin Yao, Yang Jie. Maglev Ball Control Algorithm Based on Levant Differentiator [J]. Journal of System Simulation, 2024, 36(7): 1586-1595. |
[3] | Zhang Hongli, Deng Jingshuang. Research on Artificial Population Generation and Application Based on Genetic Algorithm [J]. Journal of System Simulation, 2023, 35(9): 1965-1974. |
[4] | Lizhen Du, Tao Ye, Yuhao Wang, Yajun Zhang, Zifeng Xuan. Improved Particle Swarm Algorithm of Unrelated Parallel Batch Scheduling Optimization [J]. Journal of System Simulation, 2023, 35(7): 1549-1561. |
[5] | Shao Liangshan, Wang Zhen, Li Changming. Optimization Algorithm of Mine Ventilation Based on SA-IPSO [J]. Journal of System Simulation, 2021, 33(9): 2085-2094. |
[6] | Lu Jiabo, Cheng Peixing, Huang Yi, Yao Jinqiang, Yang Xuemeng, Ma Xinqiang, Liu Yong. An Intelligent Method for Rapid Construction of Time Sensitive Target Strike Chain [J]. Journal of System Simulation, 2021, 33(2): 346-357. |
[7] | Cai Min, Wang Yan, Ji Zhicheng. Research on MOFFJSP Based on Multi-strategy Fusion Quantum Particle Swarm Optimization [J]. Journal of System Simulation, 2021, 33(11): 2615-2626. |
[8] | Li Zhenping, Zhao Yuwei, Zhang Yuwei, Xing Lining, Ren Teng. Joint Distribution Location-routing Problem and Large Neighborhood Search Algorithm [J]. Journal of System Simulation, 2021, 33(10): 2518-2531. |
[9] | Shen Peng, Wang Yan, Ji Zhicheng, Zhang Jianhua. Hyper-heuristic DE Algorithm for Solving Zero-wait Fermentation Process Schedulinge [J]. Journal of System Simulation, 2020, 32(11): 2235-2243. |
[10] | Zhao Wenqing, Qin Zhibu. Improved Intelligent Water Drops Algorithm Applied to Power Economic Emission Dispatch [J]. Journal of System Simulation, 2018, 30(8): 3213-3218. |
[11] | Liu Wei, Xu Jiaxuan, Wang Peipei, Liu Ruilong, Tang Jingkun. Train Energy Saving Operation Based on Simulated Annealing Algorithm [J]. Journal of System Simulation, 2018, 30(6): 2320-2327. |
[12] | Wang Changtao, Sun Xiaotong, Han Zhonghua, Zhu Yi. A Study of Adaptive Simulated Annealing Particle Swarm Optimization (ASAPSO) Algorithm for Building Pipe Routing Design [J]. Journal of System Simulation, 2018, 30(5): 1941-1949. |
[13] | Ji Weixi, Cai Youyong, Zhang Chaoyang, Peng Wei. Abnormal Event Driven Rescheduling Decision Making in Discrete Manufacturing Workshop [J]. Journal of System Simulation, 2018, 30(11): 4043-4052. |
[14] | Chen Chao, Wang Yan, Yan Dahu, Ji Zhicheng. Research on Dynamic Flexible Job Shop Scheduling Problem for Energy Consumption [J]. Journal of System Simulation, 2017, 29(9): 2168-2175. |
[15] | Xu Shipeng, Wu Dinghui, Kong Fei, Ji Zhicheng. Solving Flexible Job-Shop Scheduling Problem by Improved Chicken Swarm Optimization Algorithm [J]. Journal of System Simulation, 2017, 29(7): 1497-1505. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||