[1] 胡燕花, 唐鹏, 金炜东, 等. 铁路视频序列的FOE的估计[J]. 计算机科学, 2018, 45(7): 226-229. Hu Yanhua, Tang Peng, Jin Weidong, et al.Estimation of FOE of Railway Video Sequence[J]. Computer Science, 2018, 45(7): 226-229. [2] 胡燕花. 接触网巡检图像的细节强化与场景重构[D].成都: 西南交通大学, 2018. Hu Yanhua.Detail Enhancement and Scene Reconstruction of Catenary Inspection Images[D]. Chengdu: Southwest Jiaotong University, 2018. [3] Tang P, Jin W.Railway Running Smoothness Monitoring based on Visual Motion Parallax[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macao: IEEE, 2017: 2407-2412. [4] Zhang L, Koch R.Vanishing Points Estimation and Line Classification in a Manhattan World[C]//Asian Conference on Computer Vision. Daejeon, Korea: Springer, Berlin, Heidelberg, 2012: 38-51. [5] Geiger A, Lenz P, Urtasun R.Are We Ready for Autonomous Driving? the Kitti Vision Benchmark Suite[C]//2012 IEEE Conference on Computer Vision And Pattern Recognition. Providence, RI: IEEE, 2012: 3354-3361. [6] Carlevaris-Bianco N, Ushani A K, Eustice R M.University of Michigan North Campus Long-term vision and Lidar Dataset[J]. The International Journal of Robotics Research (S0278-3649), 2016, 35(9): 1023-1035. [7] 段旺旺. 面向监控视频的接触网设备检测及异常识别[D]. 成都: 西南交通大学, 2016. Duan Wangwang.Catenary Equipment Detection and Abnormal Recognition for Surveillance Video[D]. Chengdu: Southwest Jiaotong University, 2016. [8] 贺志明. 透视文本图像的灭点快速探测[J]. 上海工程技术大学报, 2012, 23(3): 229-232. He Zhiming.Fast Detection of Vanishing Points in Perspective Text Images[J]. Journal of Shanghai University of Engineering Science, 2012, 23(3): 229-232. [9] 谢文寒, 张祖勋, 张剑清. 一种新的基于灭点的相机标定方法[J]. 哈尔滨工业大学学报, 2003, 35(11): 1384-1387. Xie Wenhan, Zhang Zuxun, Zhang Jianqing.A New Method of Camera Calibration based on Vanishing Point[J]. Journal of Harbin Institute of Technology, 2003, 35(11): 1384-1387. [10] Li S, Wang L, Li J, et al.Image Classification Algorithm Based on Improved AlexNet[J]. Journal of Physics: Conference Series(S1742-6588), 2021, 1813(1): 012051. [11] 王浩雨. 基于改进VGG16神经网络的异常检测模型研究[J]. 现代计算机, 2020(30): 3-7, 15. Wang Haoyu.Research on Anomaly Detection Model Based on Improved VGG16 Neural Network[J]. Modern Computer, 2020(30): 3-7, 15. [12] Kiliçarslan S, Celik M.RSigELU: A Nonlinear Activation Function for Deep Neural Networks[J]. Expert Systems with Applications (S0957-4174), 2021, 174: 114805. [13] Li W.Analysis of Object Detection Performance Based on Faster R-CNN[J]. Journal of Physics: Conference Series. IOP Publishing (S1742-6588), 2021, 1827(1): 012085. [14] 陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29(7): 2071-2091. Chen Jianting, Xiang Yang.A Review of Research on Gradient Instability in Deep Neural Network Training[J]. Journal of Software, 2018, 29(7): 2071-2091. [15] Jing L, Tian Y.Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2021, 43(11): 4037-4058. [16] 刘祥强, 李强, 何多魁, 等. 基于自监督学习的卷积神经网络在CT图像中的肝脏自动分割研究[J]. 科学技术创新, 2021(3): 78-79. Liu Xiangqiang, Li Qiang, He Duokui, et al.Research on Automatic Liver Segmentation in CT Images Based on Self-supervised Learning Convolutional Neural Network[J]. Science and Technology Innovation, 2021(3): 78-79. [17] Liu Y B, Zeng M, Meng Q H.D-vpnet: A Network for Real-time Dominant Vanishing Point Detection in Natural Scenes[J]. Neurocomputing(S0925-2312), 2020, 417: 432-440. |