[1] |
宋元, 王永春. 海上防空作战态势估计理论及应用[M]. 北京: 国防工业出版社, 2014. SONG Yuan, WANG Yongchun. Theory and Application of Situation Assessment for Naval Air Defense[M]. Beijing: National Defense Industry Press, 2014.
|
[2] |
张最良, 黄谦. 进一步推进我军军事运筹学研究与应用的创新[J]. 军事运筹与系统工程, 2014, 28(4): 72-76. ZHANG Zuiliang, HUANG Qian. Farther advancing military operation research and application innovation of our military[J]. Military operation research and systems engineering, 2014, 28(4): 72-76.
|
[3] |
司光亚, 高翔, 刘洋, 等. 基于仿真大数据的效能评估指标体系构建方法[J]. 大数据, 2016, 2(4): 57-68. SI Guangya, GAO Xiang, LIU Yang, et al. Method for Building effectiveness Evaluation Index System Based on Big Simulation Data[J]. Big Data Research, 2016, 2(4): 57-68.
|
[4] |
习近平. 决胜全面建成小康社会, 夺取新时代中国特色社会主义伟大胜利[R]. 人民日报, 2017-10-19. XI Jinping. Make Overall Efforts to Build a Well-to-do Society and Win the Great Victory of Socialism with Chinese Characteristics in the New Era[R]. People’s Daily, 2017-10-19.
|
[5] |
Fusano A, Sato H, Namatame A.Multi-agent based combat simulation from OODA and network perspective[C]. UkSim 13th International Conference on Computer Modelling and Simulation, 2011: 49-54.
|
[6] |
Endsley M R.Toward a Theory of Situation Awareness in Dynamic Systems[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society (S0018-7208), 1995, 37(1): 32-64.
|
[7] |
王杨. 战场态势目标识别与态势意图预测的算法研究[D]. 无锡: 江南大学, 2015.WANG Yang. Research on Battlefield Target Identification and Situation Intention Forecasting[D]. Wuxi: Jiangnan University Master Thesis, 2015.
|
[8] |
柳玉, 文家焱, 陈建华. 计算机兵棋系统发展及应用研究[J]. 兵工自动化, 2015, 34(8): 20-26. Liu Yu, Wen Jiayan, Chen Jianhua. Development and Application of Computer War Games System[J]. Ordnance Industry Automation, 2015, 34(8): 20-26.
|
[9] |
卜令娟, 刘俊, 邱黄亮, 等. 战场通用态势估计本体模型的构建[C]. 第二届中国指挥控制大会论文集, 北京: 2014: 138-142. BU Lingjuan, LIU Jun, QIU Huangliang, et al. A General Model of Ontology- Based Construction of the Battlefield Situation Assessment[C]. The 2nd China Command and Control Conference, Beijing, 2014: 138-142.
|
[10] |
朱丰, 胡晓峰. 基于深度学习的战场态势评估综述与研究展望[J]. 军事运筹与系统工程, 2016, 30(3): 22-27. ZHU Feng, HU Xiaofeng. Battle Situation Assessment Summarization and Research Perspective Based on Deep Learning[J]. Military Operations Research and Systems Engineering, 2016, 30(3): 22-27.
|
[11] |
朱丰, 胡晓峰, 吴琳, 等. 基于深度学习的指挥员战场态势高级理解思维过程探索性模拟方法[J]. 火力与指挥控制, 2018. ZHU Feng, Hu Xiaofeng, WU Lin, et al. Exploring Simulation Method of Thinking Process of Battlefields Situation Senior Comprehension for Commanders Based on Deep Learning[J]. Fire Control and Command Control, 2018.
|
[12] |
朱丰, 胡晓峰, 贺筱媛, 等. 一种基于CNN的样本不足战场包围态势认知方法[J]. 系统仿真学报, 2017, 29(10): 2291-2300. ZHU Feng, Hu Xiaofeng, HE Xiaoyuan, et al. Cognition Method for Battlefields Encompassing Situation Based on Convolution Neural Network without Enough Samples[J]. Journal of System Simulation, 2017, 29(10): 2291-2300.
|
[13] |
Castellano G, Cimino M G C A, Fanelli A M, et al. A Multi-Agent System for Enabling Collaborative Situation Awareness via Position-Based Stigmergy and Neuro- Fuzzy Learning[J]. Neurocomputing (S0925-2312), 2014, 135(13): 86-97.
|
[14] |
Elpiniki I Papageorgiou, Jose L Salmeron.A Review of Fuzzy Cognitive Maps Research during the Last Decade[J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2013, 21(1): 66-79.
|
[15] |
Bruce N D B. Saliency, attention and visual search: an information theoretic approach[J]. Journal of Vision (Online)(S1534-7362), 2009, 9(3): 1-24.
|
[16] |
许世勇, 王家胜. 智能化作战正在掀起一场新的军事革命[R]. 手机搜狐 (2018-01-06). XU Shiyong, WANG Jiasheng. Intelligent Warfare is Setting off a New Military Revolution[R]. Sohu Com Mobile (2018-01-06).
|
[17] |
杨蓓, 缑西梅, 艾艳. 专家系统中的模糊知识表示及推理研究[J]. 郑州大学学报(理学版), 2004, 36(2): 31-33. Yang Bei, Gou Ximei, Ai Yan. Study on the Fuzzy Knowledge Representation and Reasoning in Expert System[J]. Journal of Zhengzhou University (Natural Science Edition), 2004, 36(2): 31-33.
|
[18] |
郭晓波, 赵书良, 刘军丹, 等. 基于概念图的关联规则知识表示[J]. 计算机科学, 2013, 40(8): 261-265. GUO Xiaobo, ZHAO Shuliang, LIU Jundan, et al. Knowledge Presentation of Association Rules Based on Conceptual Graphs[J]. Computer Science, 2013, 40(8): 261-265.
|
[19] |
刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. Liu Zhiyuan, Sun Maosong, Lin Yankai, et al. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261.
|
[20] |
马创新. 论知识表示[J]. 现代情报, 2014, 34(3): 21-26. Ma Chuangxin. The Research of Knowledge Representation[J]. Journal of Modern Information, 2014, 34(3): 21-26.
|
[21] |
唐晓琳. CCF2016-2017中国计算机科学技术发展报告[M]. 北京: 机械工业出版社, 2017.TANG Xiaolin. CCF2016-2017 China Computer Science and Technology Development Report[M]. Beijing: China Machine Press, 2017.
|
[22] |
张俊林. 深度学习中的注意力机制[R]. 微信文章《人工智能头条》(2017-11-02). ZHANG Junlin. Attention Mechanisms in Deep Learning [R]. Weixin Paper ’Artificial Intelligence Headlines’(2017-11-02).
|
[23] |
尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学报, 2015, 41(1): 48-59. YIN Baocai, WANG Wentong, WANG Lichun. Review of Deep Learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59.
|
[24] |
Matej Moravcik, Martin Schmid, Neil Burch, et al. DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker[J]. arXiv:1701.01724v1 (2017-01-06).
|
[25] |
Peng P, Wen Y, Yang Y, et al. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games[J]. arXiv:1703.10069v4 (2017-09-14).
|
[26] |
Brenden M Lake, Ruslan Salakhutdinov, Joshua B Tenenbaum.Human-Level Concept Learning through Probabilistic Program Induction[J]. Science (S0036-8075), 2015, 350: 1332-1339.
|
[27] |
Pan S J, Yang Q.A Survey on Transfer Learning[J]. IEEE Trans. on Knowledge and Data Engineering (S1041-4347), 2010, 22(10): 1345-1359.
|
[28] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets[C]// Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal, Canada: Curran Associates, Inc., 2014: 2672-2680.
|
[29] |
高惠琳. 基于卷积神经网络的军事图像分类[J]. 计算机应用研究, 2017, 34(10). (优先出版). Gao Huilin. Military Image Classification Based on Convolutional Neural Network[J]. Application Research of Computers, 2017, 34(10). (First Published.)
|