[1] 全军军事术语管理委员会、军事科学院. 中国人民解放军军语(全本)[M]. 北京: 军事科学出版社,2011. PLA Military Terminology Management Committee, Chinese Academy of Military Science. Military Terms of Chinese people's Liberation Army (Complete Edition) [M]. Beijing: Military Science Press, 2011. [2] 中国军事百科全书编审委员会. 中国军事百科全书(第二版)-军事环境I[M]. 北京: 中国大百科全书出版社, 2014. Editorial Committee of China Military Encyclopedia. China Military Encyclopedia (Second Eddtion) - Military Environment I [M]. Beijing: China Encyclopedia press, 2014. [3] 清华大学—中国工程院知识智能联合研究中心, 中国人工智能学会吴文俊人工智能科学技术奖评选基地. 2019人工智能发展报告[R]. 2019.11. Knowledge intelligence Joint Research Center of Tsinghua University and China Academy of Engineering, Wu Wenjun AI science and technology evaluation base of Chinese Association for Artificial Intelligence. Report of Artificial Intelligence Development 2019[R]. 2019.11. [4] 胡云峰, 曲婷, 刘俊, 等. 智能汽车人机协同控制的研究现状与展望[J]. 自动化学报, 2019, 45(7): 1261-1280. Hu Yunfeng, Qu Ting, Liu Jun, et al.Human-machine Cooperative Control of Intelligent Vehicle: Recent Developments and Future Perspectives[J]. Acta Automatica Sinica, 2019, 45(7): 1261-1280. [5] 中国人工智能2.0发展战略研究项目组. 中国人工智能2.0发展战略研究[M]. 杭州: 浙江大学出版社, 2018. Group of Strategic Research on Artificial Intelligence 2.0 in China. Strategic Research on Artificial Intelligence 2.0 in China[M]. Hangzhou: Zhejiang University Press, 2018. [6] H P Moravec.Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids[M]. Carnegie Mellon University, the Robotics Institute, Pittsburgh, PA, Rep. CMU-RI-TR-96-34, 1996. [7] Hornung A, Wurm K M, Bennewitz M, et al.OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots (S0929-5593), 2013, 34(3): 189-206. [8] Henry P, Krainin M, Herbst E, et al.RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. International Journal of Robotics Research (S0278-3649), 2013, 31(5): 647-663. [9] Engelhard N, Endres F, Hess J, et al.Real-time 3D visual SLAM with a hand-held RGB-D camera[C]. Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, 2011, 180: 1-15. [10] Newcombe R A, Izadi S, Hilliges O, et al.KinectFusion: Real-time dense surface mapping and tracking[C]. 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, IEEE, 2011:127-136. [11] Matthias Nießner, Michael Zollhöfer, Izadi S, et al.Real-time 3D Reconstruction at Scale using Voxel Hashing[J]. ACM Transactions on Graphics (S0730-0301), 2013, 32(6): 1-11. [12] Sengupta S, Sturgess P.Semantic octree: Unifying recognition, reconstruction and representation via an octree constrained higher order MRF[C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, IEEE, 2015: 1874-1879. [13] Whelan T, Kaess M, Fallon M H, et al.Kintinuous: Spatially Extended KinectFusion[J]. Robotics & Autonomous Systems (S0921-8890), 2012, 69: 3-14. [14] Newcombe R A, Fox D, Seitz S M.DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE. Boston, MA, USA: IEEE, 2015: 343-352. [15] 刘浩敏, 章国锋, 鲍虎军. 基于单目视觉的同时定位与地图构建方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6): 855-868. Liu Haomin, Zhang Guofeng, Bao Hujun.A Survey of Monocular Simultaneous Localization and Mapping[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 855-868. [16] Lecun Y, Bengio Y, Hinton G.Deep learning[J]. Nature(S1476-4687), 2015, 521(7553): 436-444. [17] Z Liu, D Chen, Gvon Wichert. Online semantic exploration of indoor maps[C] .2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, IEEE, 2012: 4361-4366. [18] Pronobis A, Martinez M O, Caputo B, et al.Multi-modal Semantic Place Classification[J]. The International Journal of Robotics Research (S0278-3649), 2010, 29(2/3): 298-320. [19] S Sengupta, P Sturgess, L Ladický, et al.Automatic dense visual semantic mapping from street-level imagery[C]. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, IEEE, 2012: 857-862. [20] Valentin J P C, Sengupta S, Warrell J, et al. Mesh based semantic modelling for indoor and outdoor scenes[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, 2013: 2067-2074. [21] Long J, Shelhamer E, Darrell T.Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2015, 39(4): 640-651. [22] Goeddel R, Olson E.Learning semantic place labels from occupancy grids using CNNs[C]. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). Daejeon: IEEE, 2016: 3999-4004. [23] Markus H, Chen Q, Florian P, et al.Learning Topometric Semantic Maps from Occupancy Grids[C]. 2019 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China, IEEE, 2019. [24] Callaghan S T, Ramos F T.Gaussian Process Occupancy Maps for Dynamic Environments[C]. Hsieh M., Khatib O., Kumar V.(eds) Experimental Robotics. Springer Tracts in Advanced Robotics. Morocco, Springer, Cham. 2016, 109: 791-805. [25] Ramos F, Ott L.Hilbert maps: scalable continuous occupancy mapping with stochastic gradient descent[J]. The International Journal of Robotics Research (S0278-3649), 2016, 35(14): 1717-1730. [26] Vasudevan S, Siegwart R.Bayesian space conceptualization and place classification for semantic maps in mobile robotics[J]. Robotics and Autonomous Systems (S0921-8890), 2008, 56(6): 522-537. [27] Cadena C, Carlone L, Carrillo H, et al.Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age[J]. IEEE Transactions on Robotics (S1552-3098), 2016, 32(6): 1309-1332. [28] 梁明杰. 机器人认知地图创建关键技术研究[D]. 广州: 华南理工大学, 2014. Liang Mingjie.Study On The Key Issues of Cognitive Mapping for Robots[D]. Guangzhou: South China University of Technology. 2014. [29] Gutmann J S, Konolige K.Incremental mapping of large cyclic environments[C]. Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation(CIRA'99), Monterey, CA, USA, 1999: 318-325. [30] R Mur-Artal, J M M Montiel, J D Tardós, ORB-SLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics(S1552-3098), 2015, 31(5): 1147-1163. [31] K Tateno, F Tombari, I Laina, et al.CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017: 6565-6574. [32] Oh J, Howard T M, Walter M R, et al.Integrated Intelligence for Human-Robot Teams[C]. International Symposium on Experimental Robotics, Springer, Cham, 2017: 309-322. [33] Oh J, Suppé A, Duvallet F, et al.Toward mobile robots reasoning like humans[C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI'15). Texas: AAAI Press, 2015: 1371-1379. [34] Leonard J, Durrant-Whyte H, Cox I.Dynamic map building for an autonomous mobile robot[J]. The International Journal on Robotics Research (S0278-3649), 1992, 11(4): 286-298. [35] Dongping Tian.A review on image feature extraction and representation techniques[J]. International Journal of Multimedia and Ubiquitous Engineering (S1975-0080), 2013, 8(4): 385-396. [36] 王健健, 王艳楠, 周良辰, 等. 多粒度时空对象关联关系的分类体系与表达模型[J]. 地球信息科学学报, 2017, 19(9): 1164-1170. Wang Jianjian, Wang Yannan, Zhou Liangchen, et al.The classification system and expression model of the relationship of spatiotemporal object of multigranularity[J]. Journal of Geo-information Science, 2017, 19(9): 1164-1170. [37] Li K, Cheng G, Bu S, et al.Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing (S0196-2892), 2018, 56(4): 2337-2348. [38] 李钦, 游雄, 李科, 等. 图像深度层次特征提取算法[J]. 模式识别与人工智能, 2017, 30(2): 127-136. Li Qin, You Xiong, Li Ke, et al.Deep Hierarchical Feature Extraction Algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 127-136. [39] 田江鹏. 移动地图的认知语义理论与动态制图模型[D]. 郑州: 解放军信息工程大学, 2016. Tian Jiangpeng.Cognitive Semantics Theory and Dynamic Cartographic Model of Mobile Map[D]. Zhengzhou: PLA Information Engineering University, 2016. [40] 游天. 情境驱动的室内位置地图表达理论与方法研究[D]. 郑州: 解放军信息工程大学文, 2017. You Tian.Research on Theory and Methods of Context- Driven Indoor Location Map Representation[D]. Zhengzhou: PLA Information Engineering University, 2017. [41] 田江鹏, 游雄,贾奋励,等. 移动地图制图的句法模型[J]. 测绘学报, 2016, 45(11): 1352-1360. Tian Jiangpeng, You Xiong, Jia Fenli, et al.The Syntax Model of Mobile Maps Generation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1352-1360. [42] 游雄. 从VGE到机器地图: 空间认知手段的新发展[C]. 地图与空间认知研讨会. 郑州: 郑州大学, 2018. You Xiong.From VGE to Machine Map: The new development of spatial cognitive tools[C]. Symposium on maps and spatial cognition, Zhengzhou: Zhengzhou University, 2018. |