| [1] |
Takács Bence, Dóczi Roland, Sütő Balázs, et al. Extending AUV Response Robot Capabilities to Solve Standardized Test Methods[J]. Acta Polytechnica Hungarica, 2016, 13(1): 157-170.
|
| [2] |
赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法[J]. 国防科技大学学报, 2021, 43(1): 41-48.
|
|
Zhao Miao, Gao Yongqi, Wu Dixiao, et al. AUV Global Path Planning Method in Complex Sea Battle Field Environment[J]. Journal of National University of Defense Technology, 2021, 43(1): 41-48.
|
| [3] |
郭银景, 侯佳辰, 吴琪, 等. AUV全局路径规划环境建模算法研究进展[J]. 舰船科学技术, 2021, 43(17): 12-18.
|
|
Guo Yinjing, Hou Jiachen, Wu Qi, et al. Research Progress of AUV Global Path Planning Environment Modeling Algorithm[J]. Ship Science and Technology, 2021, 43(17): 12-18.
|
| [4] |
胡春磊, 章飞, 曾庆军. 基于多目标蚁群策略的AUV全局路径规划算法[J]. 传感器与微系统, 2020, 39(11): 107-109, 113.
|
|
Hu Chunlei, Zhang Fei, Zeng Qingjun. Global Path Planning Algorithm for AUV Based on Multi-objective Ant Colony Strategy[J]. Transducer and Microsystem Technologies, 2020, 39(11): 107-109, 113.
|
| [5] |
李世奇, 孙兵, 朱蟋蟋. 海流环境下基于改进D∗算法的AUV动态路径规划[J]. 高技术通讯, 2022, 32(1): 84-92.
|
|
Li Shiqi, Sun Bing, Zhu Xixi. Autonomous Underwater Vehicles Dynamic Path Planning Based on Improved D* Algorithm in Ocean Current Environment[J]. Chinese High Technology Letters, 2022, 32(1): 84-92.
|
| [6] |
洪晔, 王宏健, 边信黔. 基于分层马尔可夫决策过程的AUV全局路径规划研究[J]. 系统仿真学报, 2008, 20(9): 2361-2363, 2367.
|
|
Hong Ye, Wang Hongjian, Bian Xinqian. Global Path Planning for AUV Based on Hierarchical Markov Decision Processes[J]. Journal of System Simulation, 2008, 20(9): 2361-2363, 2367.
|
| [7] |
王磊, 刘晶晶, 齐俊艳, 等. 基于改进人工势场法的AUV全局路径规划[J]. 河南理工大学学报(自然科学版), 2024, 43(1): 132-139.
|
|
Wang Lei, Liu Jingjing, Qi Junyan, et al. A Global Path Planning Algorithm for AUV Based on Improved Artificial Potential Field Method[J]. Journal of Henan Polytechnic University(Natural Science), 2024, 43(1): 132-139.
|
| [8] |
薛双飞. 基于改进A*算法的近海船舶路径规划[D]. 武汉: 武汉理工大学, 2018.
|
|
Xue Shuangfei. Route Planning of Offshore Ships Based on Improved A* Algorithm[D]. Wuhan: Wuhan University of Technology, 2018.
|
| [9] |
McColgan J, McGookin E W, Mazlan A N A. A Low Fidelity Mathematical Model of a Biomimetic AUV for Multi-vehicle Cooperation[C]//OCEANS 2015 - Genova. Piscataway: IEEE, 2015: 1-10.
|
| [10] |
Luo Lei, Zhao Ning, Zhu Yi, et al. A* Guiding DQN Algorithm for Automated Guided Vehicle Pathfinding Problem of Robotic Mobile Fulfillment Systems[J]. Computers & Industrial Engineering, 2023, 178: 109112.
|
| [11] |
Yang Yang, Li Juntao, Peng Lingling. Multi-robot Path Planning Based on a Deep Reinforcement Learning DQN Algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 177-183.
|
| [12] |
Zhang Yaoyu, Li Caihong, Zhang Guosheng, et al. Research on the Local Path Planning for Mobile Robots Based on PRO-dueling Deep Q-network (DQN) Algorithm[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(8): 381-387.
|
| [13] |
罗磊, 赵宁, 任成栋. 基于行为克隆和奖励重构的AGV路径规划算法[J/OL]. 计算机集成制造系统. (2023-10-24)[2024-03-27]. .
|
|
Luo Lei, Zhao Ning, Ren Chengdong. Reinforcement Learning Algorithm for AGV Path Planning Based on Behavioral Cloning and Reward Reconstruction[J/OL]. Computer Integrated Manufacturing Systems. (2023-10-24)[2024-03-27]. .
|
| [14] |
周娴玮, 包明豪, 叶鑫, 等. 带Q网络过滤的两阶段TD3深度强化学习方法[J]. 计算机技术与发展, 2023, 33(10): 101-108.
|
|
Zhou Xianwei, Bao Minghao, Ye Xin, et al. Two-stage TD3 Deep Reinforcement Learning Algorithm with Q Network Filtration[J]. Computer Technology and Development, 2023, 33(10): 101-108.
|
| [15] |
Yang Jiachen, Ni Jingfei, Xi Meng, et al. Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1983-1996.
|
| [16] |
Yang Xiao, Han Qilong. Improved DQN for Dynamic Obstacle Avoidance and Ship Path Planning[J]. Algorithms, 2023, 16(5): 220.
|
| [17] |
Lou Ping, Xu Kun, Jiang Xuemei, et al. Path Planning in an Unknown Environment Based on Deep Reinforcement Learning with Prior Knowledge[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(6): 5773-5789.
|
| [18] |
Wenzel Pilar von Pilchau, Stein Anthony, Hähner Jörg, et al. Synthetic Experiences for Accelerating DQN Performance in Discrete Non-deterministic Environments[J]. Algorithms, 2021, 14(8): 226.
|
| [19] |
Zeyad Abd Algfoor, Mohd Shahrizal Sunar, Kolivand Hoshang. A Comprehensive Study on Pathfinding Techniques for Robotics and Video Games[J]. International Journal of Computer Games Technology, 2015, 2015(1): 736138.
|