[1] |
Amodio Alessandro, Ermidoro Michele, Maggi D, et al. Automatic Detection of Driver Impairment Based on Pupillary Light Reflex[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3038-3048.
|
[2] |
邱轶辉, 江琼, 魏玲玲, 等. 基于迁移学习的跨被试脑电疲劳驾驶检测[J]. 南昌大学学报(理科版), 2023, 47(4): 397-402.
|
|
Qiu Yihui, Jiang Qiong, Wei Lingling, et al. Transfer Learning-based Cross-subject EEG Fatigue Driving Detection[J]. Journal of Nanchang University(Natural Science), 2023, 47(4): 397-402.
|
[3] |
Guo Zizheng, Wang Guanglei, Zhou Ming, et al. Monitoring and Detection of Driver Fatigue from Monocular Cameras Based on Yolov5[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI). Piscataway: IEEE, 2022: 1-6.
|
[4] |
Sikander Gulbadan, Anwar Shahzad. Driver Fatigue Detection Systems: A Review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2339-2352.
|
[5] |
李小平, 白超. 一种基于多模态信息融合的火车司机疲劳驾驶检测方法[J]. 铁道学报, 2022, 44(6): 56-65.
|
|
Li Xiaoping, Bai Chao. A Train Driver Fatigue Driving Detection Method Based on Multi-modal Information Fusion[J]. Journal of the China Railway Society, 2022, 44(6): 56-65.
|
[6] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[7] |
Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Piscataway: IEEE, 2001: I-511-I-518.
|
[8] |
Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Piscataway: IEEE, 2005: 886-893.
|
[9] |
Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
|
[10] |
Agrawal P, Girshick R, Malik J. Analyzing the Performance of Multilayer Neural Networks for Object Recognition[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 329-344.
|
[11] |
Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448.
|
[12] |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
[13] |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
|
[14] |
Liu Wei, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
[15] |
Carion N, Massa F, Synnaeve G, et al. End-to-end Object Detection with Transformers[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
|
[16] |
Li Kening, Gong Yunbo, Ren Ziliang. A Fatigue Driving Detection Algorithm Based on Facial Multi-feature Fusion[J]. IEEE Access, 2020, 8: 101244-101259.
|
[17] |
Niu Chengwen, Song Yunsheng, Zhao Xinyue. SE-lightweight YOLO: Higher Accuracy in YOLO Detection for Vehicle Inspection[J]. Applied Sciences, 2023, 13(24): 13052.
|
[18] |
苏彤, 王颖, 邓启扬, 等. 基于YOLOv5改进的雾天行人与车辆检测算法[J]. 系统仿真学报, 2024, 36(10): 2413-2422.
|
|
Su Tong, Wang Ying, Deng Qiyang, et al. Improved Foggy Pedestrian and Vehicle Detection Algorithm Based on YOLOv5[J]. Journal of System Simulation, 2024, 36(10): 2413-2422.
|
[19] |
王银, 王飞翔, 孙前来. 多尺度特征融合车辆检测方法[J]. 系统仿真学报, 2022, 34(6): 1219-1229.
|
|
Wang Yin, Wang Feixiang, Sun Qianlai. Vehicle Detection Method Based on Multi Scale Feature Fusion[J]. Journal of System Simulation, 2022, 34(6): 1219-1229.
|
[20] |
Chen Leiyu, Li Shaobo, Bai Qiang, et al. Review of Image Classification Algorithms Based on Convolutional Neural Networks[J]. Remote Sensing, 2021, 13(22): 4712.
|
[21] |
Sun Zhaoyun, Zhai Junzhi, Pei Lili, et al. Automatic Pavement Crack Detection Transformer Based on Convolutional and Sequential Feature Fusion[J]. Sensors, 2023, 23(7): 3772.
|
[22] |
付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
|
|
Fu Jinyi, Zhang Zijia, Sun Wei, et al. Improved YOLOv8 Small Target Detection Algorithm in Aerial Images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
|
[23] |
郭业才, 孙京东, Saha Amitave. 基于YOLOv5改进的航拍图像目标检测算法[J]. 系统仿真学报, 2025, 37(2): 551-562.
|
|
Guo Yecai, Sun Jingdong, Saha Amitave. Improved Target Detection Algorithm for Aerial Images Based on YOLOv5[J]. Journal of System Simulation, 2025, 37(2): 551-562.
|
[24] |
Chen Long, Ding Qiwei, Zou Qin, et al. DenseLightNet: A Light-weight Vehicle Detection Network for Autonomous Driving[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10600-10609.
|
[25] |
Chen Jierun, Kao S H, He Hao, et al. Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 12021-12031.
|
[26] |
Wang Jian, Zhang Fei, Zhang Yuesong, et al. Lightweight Object Detection Algorithm for UAV Aerial Imagery[J]. Sensors, 2023, 23(13): 5786.
|
[27] |
Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: More Features from Cheap Operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 1577-1586.
|
[28] |
Alansari Mohamad, Oussama Abdul Hay, Javed Sajid, et al. GhostFaceNets: Lightweight Face Recognition Model from Cheap Operations[J]. IEEE Access, 2023, 11: 35429-35446.
|
[29] |
Zhang Zicheng, Xu Hongke, Lin Shan. Quantizing YOLOv5 for Real-time Vehicle Detection[J]. IEEE Access, 2023, 11: 145601-145611.
|
[30] |
许晓阳, 高重阳. 改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83.
|
|
Xu Xiaoyang, Gao Chongyang. Improved YOLOv7-tiny Lightweight Infrared Vehicle Target Detection Algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83.
|
[31] |
Lin T, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755.
|
[32] |
Zhao Yian, Wenyu Lü, Xu Shangliang, et al. DETRs Beat YOLOs on Real-time Object Detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2024: 16965-16974.
|
[33] |
Li Hulin, Li Jun, Wei Hanbing, et al. Slim-neck by GSConv: A Better Design Paradigm of Detector Architectures for Autonomous Vehicles[EB/OL]. (2022-06-06) [2024-03-24]. .
|
[34] |
Ma Ningning, Zhang Xiangyu, Zheng Haitao, et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 122-138.
|