1 |
卢裕秋, 孙金玉, 马世伟. 基于深度卷积神经网络的运动目标检测方法[J]. 系统仿真学报, 2019, 31(11): 2275-2280.
|
|
Lu Yuqiu, Sun Jinyu, Ma Shiwei. Moving Object Detection Based on Deep Convolutional Neural Network[J]. Journal of System Simulation, 2019, 31(11): 2275-2280.
|
2 |
张稀柳, 张晓玲, 何敏军. 基于改进YOLOX-s的车辆检测方法研究[J]. 系统仿真学报, 2024, 36(2): 487-496.
|
|
Zhang Xiliu, Zhang Xiaoling, He Minjun. Research on Vehicle Detection Method Based on Improved YOLOX-s[J]. Journal of System Simulation, 2024, 36(2): 487-496.
|
3 |
石敏, 姚瀚钦, 李淳芃, 等. 基于深度Alignment网络的足部测量[J]. 系统仿真学报, 2020, 32(7): 1267-1278.
|
|
Shi Min, Yao Hanqin, Li Chunpeng, et al. Foot Measurement Based on Deep Alignment Network[J]. Journal of System Simulation, 2020, 32(7): 1267-1278.
|
4 |
Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448.
|
5 |
Liu Wei, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
6 |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
|
7 |
Zhang Shifeng, Chi Cheng, Yao Yongqiang, et al. Bridging the Gap Between Anchor-based and Anchor-free Detection Via Adaptive Training Sample Selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 9756-9765.
|
8 |
Carion N, Massa F, Synnaeve G, et al. End-to-end Object Detection with Transformers[C]//Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
|
9 |
Zhu Xizhou, Su Weijie, Lu Lewei, et al. Deformable DETR: Deformable Transformers for End-to-end Object Detection[EB/OL]. (2021-03-18) [2023-11-21]. .
|
10 |
Dai Xiyang, Chen Yinpeng, Yang Jianwei, et al. Dynamic DETR: End-to-end Object Detection with Dynamic Attention[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 2968-2977.
|
11 |
Li Feng, Zhang Hao, Liu Shilong, et al. DN-DETR: Accelerate DETR Training by Introducing Query DeNoising[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 13609-13617.
|
12 |
高昕, 甄国涌, 储成群, 等. 基于改进YOLOv5的自动驾驶目标检测方法[J]. 科学技术与工程, 2024, 24(16): 6757-6765.
|
|
Gao Xin, Zhen Guoyong, Chu Chengqun, et al. Autonomous Driving Target Detection Method Based on Improved YOLOv5[J]. Science Technology and Engineering, 2024, 24(16): 6757-6765.
|
13 |
Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[EB/OL]. (2015-03-09) [2024-01-15]. .
|
14 |
Chen Guobin, Choi W, Yu Xiang, et al. Learning Efficient Object Detection Models with Knowledge Distillation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 742-751.
|
15 |
Wang Tao, Yuan Li, Zhang Xiaopeng, et al. Distilling Object Detectors with Fine-grained Feature Imitation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 4928-4937.
|
16 |
Sun Ruoyu, Tang Fuhui, Zhang Xiaopeng, et al. Distilling Object Detectors with Task Adaptive Regularization[EB/OL]. (2020-06-23) [2024-02-09]. .
|
17 |
Zhang Linfeng, Ma Kaisheng. Improve Object Detection with Feature-based Knowledge Distillation: Towards Accurate and Efficient Detectors[C]//ICLR 2021. New York: ICLR, 2020: 1-14.
|
18 |
Yang Zhendong, Li Zhe, Jiang Xiaohu, et al. Focal and Global Knowledge Distillation for Detectors[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 4633-4642.
|
19 |
朱志豪, 王艳, 纪志成. 基于模型压缩的安瓿瓶外观检测仿真研究[J]. 系统仿真学报, 2022, 34(12): 2575-2583.
|
|
Zhu Zhihao, Wang Yan, Ji Zhicheng. Simulation Research on Appearance Detection of Ampoules Based on Lightweight Network and Model Compression[J]. Journal of System Simulation, 2022, 34(12): 2575-2583.
|
20 |
Yao Zhuyu, Ai Jiangbo, Li Boxun, et al. Efficient DETR: Improving End-to-end Object Detector with Dense Prior[EB/OL]. (2021-04-03) [2023-12-28]. .
|
21 |
Meng Depu, Chen Xiaokang, Fan Zejia, et al. Conditional DETR for Fast Training Convergence[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 3631-3640.
|
22 |
Roh Byungseok, Jae Woong Shin, Shin Wuhyun, et al. Sparse DETR: Efficient End-to-end Object Detection with Learnable Sparsity[EB/OL]. (2022-03-04) [2024-01-06]. .
|
23 |
Zhang Hao, Li Feng, Liu Shilong, et al. DINO: DETR with Improved DeNoising Anchor Boxes for End-to-end Object Detection[EB/OL]. (2022-07-11) [2024-01-18]. .
|
24 |
Yu Weihao, Luo Mi, Zhou Pan, et al. MetaFormer is Actually What You Need for Vision[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 10809-10819.
|
25 |
Romero Adriana, Ballas Nicolas, Samira Ebrahimi Kahou, et al. FitNets: Hints for Thin Deep Nets[EB/OL]. (2015-03-27) [2024-02-21]. .
|
26 |
Zheng Zhaohui, Ye Rongguang, Hou Qibin, et al. Localization Distillation for Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10070-10083.
|
27 |
Zhao Yian, Wenyu Lü, Xu Shangliang, et al. DETRs Beat YOLOs on Real-time Object Detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2024: 16965-16974.
|
28 |
Liu Shilong, Li Feng, Zhang Hao, et al. DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR[EB/OL]. (2022-03-30) [2024-03-07]. .
|