系统仿真学报 ›› 2024, Vol. 36 ›› Issue (4): 1028-1042.doi: 10.16182/j.issn1004731x.joss.22-1332
• 论文 • 上一篇
收稿日期:
2022-11-09
修回日期:
2023-01-06
出版日期:
2024-04-15
发布日期:
2024-04-18
通讯作者:
颜文旭
E-mail:2066760176@qq.com;ywx01@jiangnan.edu.cn
第一作者简介:
史蓝兮(1997-),女,硕士生,研究方向为视觉SLAM。E-mail:2066760176@qq.com
基金资助:
Shi Lanxi1(), Yan Wenxu1(
), Ni Hongyu2, Zhao Feng2
Received:
2022-11-09
Revised:
2023-01-06
Online:
2024-04-15
Published:
2024-04-18
Contact:
Yan Wenxu
E-mail:2066760176@qq.com;ywx01@jiangnan.edu.cn
摘要:
针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择 方法 ,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度。提出了一个改进的目标检测网络,利用重叠面积、距离相似度和余弦相似度构建描述边界框的回归损失函数,实现目标的准确定位,获得当前图像帧中物体特征点范围。判断物体类别,对于标记为动态的物体根据目标检测结果剔除前端图像帧中的动态特征点。根据静态特征点,采用对极约束进行两帧图像间的特征匹配估计位姿,对单目相机运动进行跟踪、建图与闭环检测。通过对目标检测网络的主干进行结构重参数化改进,提升推理过程的速度,保证整体系统运行的实时性。在公开数据集KITTI的11个序列上的实验结果表明:改进后的系统比ORB-SLAM3系统定位精度提升了23.4%,帧率可以达到30 帧/s以上,在保证实时运行的条件下能有效提高动态场景下单目SLAM系统定位精度。
中图分类号:
史蓝兮,颜文旭,倪宏宇等 . 基于改进目标检测的动态场景SLAM研究[J]. 系统仿真学报, 2024, 36(4): 1028-1042.
Shi Lanxi,Yan Wenxu,Ni Hongyu,et al . Research on Dynamic Scene SLAM Based on Improved Object Detection[J]. Journal of System Simulation, 2024, 36(4): 1028-1042.
表2
绝对轨迹误差对比
序列 | 平均值 | 标准差 | 均方根误差 | ||||||
---|---|---|---|---|---|---|---|---|---|
ORB-SLAM3 | 文献[ | 本文 | ORB-SLAM3 | 文献[ | 本文 | ORB-SLAM3 | 文献[ | 本文 | |
00 | 0.513 | 13.238 | 0.396 | 0.286 | 5.222 | 0.245 | 0.587 | 15.165 | 0.466 |
01 | ― | 6.505 | 2.021 | ― | 2.631 | 1.407 | ― | 7.017 | 2.462 |
02 | 0.735 | 9.155 | 0.727 | 0.535 | 6.015 | 0.618 | 0.907 | 10.594 | 0.954 |
03 | 0.042 | 0.865 | 0.025 | 0.042 | 0.267 | 0.019 | 0.059 | 0.906 | 0.032 |
04 | 0.043 | 0.247 | 0.006 | 0.022 | 0.126 | 0.003 | 0.048 | 0.277 | 0.007 |
05 | 0.164 | 5.997 | 0.185 | 0.056 | 3.093 | 0.075 | 0.173 | 6.748 | 0.200 |
06 | 0.513 | 3.157 | 0.434 | 0.286 | 1.786 | 0.259 | 0.587 | 3.627 | 0.505 |
07 | 0.229 | 1.353 | 0.175 | 0.114 | 1.515 | 0.101 | 0.256 | 2.484 | 0.212 |
08 | 4.770 | 4.913 | 3.758 | 3.743 | 3.432 | 2.723 | 6.063 | 5.993 | 4.641 |
09 | 0.608 | 4.866 | 0.287 | 0.570 | 3.953 | 0.126 | 0.834 | 6.269 | 0.314 |
10 | 0.293 | 3.158 | 0.379 | 0.295 | 1.778 | 0.331 | 0.474 | 3.753 | 0.503 |
表3
相对轨迹误差对比
序列 | 均方根误差/% | 旋转误差/((˚)/m) | ||||
---|---|---|---|---|---|---|
ORB-SLAM3 | 文献[ | 本文 | ORB-SLAM3 | 文献[ | 本文 | |
00 | 1.334 | 1.791 | 1.468 | 0.767 | 0.216 | 0.474 |
01 | ― | 3.632 | 0.958 | ― | 0.064 | 2.352 |
02 | 0.692 | 1.207 | 0.166 | 0.272 | 0.158 | 0.302 |
03 | 0.591 | 1.174 | 0.403 | 0.107 | 0.058 | 0.169 |
04 | 0.669 | 0.617 | 0.552 | 0.147 | 0.046 | 0.14 |
05 | 1.022 | 0.988 | 1.347 | 0.328 | 0.077 | 0.497 |
06 | 2.601 | 0.797 | 1.607 | 0.229 | 0.057 | 0.193 |
07 | 1.122 | 0.812 | 1.126 | 0.191 | 0.075 | 0.182 |
08 | 10.855 | 1.479 | 6.392 | 0.184 | 0.072 | 0.19 |
09 | 4.113 | 1.612 | 1.041 | 0.282 | 0.067 | 0.246 |
10 | 2.022 | 1.318 | 1.504 | 0.183 | 0.083 | 0.186 |
1 | Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Real-time Single Camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. |
2 | 张良桥, 陈国良, 许晓东, 等. 一种用于图像特征提取的改进ORB-SLAM算法[J]. 测绘通报, 2019(3): 16-20. |
Zhang Liangqiao, Chen Guoliang, Xu Xiaodong, et al. An Improved ORB-SLAM Algorithm for Feature Extraction[J]. Bulletin of Surveying and Mapping, 2019(3): 16-20. | |
3 | Zhou Lipu, Wang Shengze, Kaess M. DPLVO: Direct Point-line Monocular Visual Odometry[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7113-7120. |
4 | Ban Xicheng, Wang Hongjian, Chen Tao, et al. Monocular Visual Odometry Based on Depth and Optical Flow Using Deep Learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-19. |
5 | Li Jinquan, Pei Ling, Zou Danping, et al. Attention-SLAM: A Visual Monocular SLAM Learning from Human Gaze[J]. IEEE Sensors Journal, 2021, 21(5): 6408-6420. |
6 | Lee Sehyung, Lim Jongwoo, Il Hong Suh. Progressive Feature Matching: Incremental Graph Construction and Optimization[J]. IEEE Transactions on Image Processing, 2020, 29: 6992-7005. |
7 | 胡立华, 左威健, 张继福. 采用逆近邻与影响空间的图像特征误匹配剔除方法[J]. 计算机辅助设计与图形学学报, 2022, 34(3): 449-458. |
Hu Lihua, Zuo Weijian, Zhang Jifu. A Mismatch Elimination Method Based on Reverse Nearest Neighborhood and Influence Space[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(3): 449-458. | |
8 | 任彬, 宋海丽, 赵增旭, 等. 基于RANSAC的视觉里程计优化方法研究[J]. 仪器仪表学报, 2022, 43(6): 205-212. |
Ren Bin, Song Haili, Zhao Zengxu, et al. Study on Optimization Method of Visual Odometry Based on RANSAC[J]. Chinese Journal of Scientific Instrument, 2022, 43(6): 205-212. | |
9 | 盛超, 潘树国, 赵涛, 等. 基于图像语义分割的动态场景下的单目SLAM算法[J]. 测绘通报, 2020(1): 40-44. |
Sheng Chao, Pan Shuguo, Zhao Tao, et al. Monocular SLAM System in Dynamic Scenes Based on Image Semantic Segmentation[J]. Bulletin of Surveying and Mapping, 2020(1): 40-44. | |
10 | Chang Jianfang, Dong Na, Li Donghui. A Real-time Dynamic Object Segmentation Framework for SLAM System in Dynamic Scenes[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9. |
11 | 刘瑞军, 王向上, 张晨, 等. 基于深度学习的视觉SLAM综述[J]. 系统仿真学报, 2020, 32(7): 1244-1256. |
Liu Ruijun, Wang Xiangshang, Zhang Chen, et al. A Survey on Visual SLAM Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(7): 1244-1256. | |
12 | 张翠文, 张长伦, 何强, 等. 目标检测中框回归损失函数的研究[J]. 计算机工程与应用, 2021, 57(20): 97-103. |
Zhang Cuiwen, Zhang Changlun, He Qiang, et al. Research on Loss Function of Box Regression in Object Detection[J]. Computer Engineering and Applications, 2021, 57(20): 97-103. | |
13 | Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2019: 658-666. |
14 | Zheng Zhaohui, Wang Ping, Ren Dongwei, et al. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
15 | Xue Hongtao, Wu Meng, Zhang Ziming, et al. Intelligent Diagnosis of Mechanical Faults of In-wheel Motor Based on Improved Artificial Hydrocarbon Networks[J]. ISA Transactions, 2022, 120: 360-371. |
16 | Zoph B, Vasudevan V, Shlens J, et al. Learning Transferable Architectures for Scalable Image Recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 8697-8710. |
17 | Ding Xiaohan, Zhang Xiangyu, Ma Ningning, et al. RepVGG: Making VGG-style ConvNets Great Again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13728-13737. |
18 | Campos Carlos, Elvira Richard, J Gómez Rodríguez Juan, et al. ORB-SLAM3: An Accurate Open-source Library for Visual, Visual-inertial, and Multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. |
19 | 艾青林, 刘刚江, 徐巧宁. 动态环境下基于改进几何与运动约束的机器人RGB-D SLAM算法[J]. 机器人, 2021, 43(2): 167-176. |
Ai Qinglin, Liu Gangjiang, Xu Qiaoning. An RGB-D SLAM Algorithm for Robot Based on the Improved Geometric and Motion Constraints in Dynamic Environment[J]. Robot, 2021, 43(2): 167-176. | |
20 | Shao Chunyan, Zhang Chi, Fang Zaojun, et al. A Deep Learning-based Semantic Filter for RANSAC-based Fundamental Matrix Calculation and the ORB-SLAM System[J]. IEEE Access, 2020, 8: 3212-3223. |
21 | João Carlos Virgolino Soares, Gattass Marcelo, Marco Antonio Meggiolaro. Visual SLAM in Human Populated Environments: Exploring the Trade-off between Accuracy and Speed of YOLO and Mask R-CNN[C]//2019 19th International Conference on Advanced Robotics (ICAR). Piscataway, NJ, USA: IEEE, 2019: 135-140. |
22 | Bescos Berta, Fácil José M, Civera Javier, et al. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. |
23 | Geiger A, Lenz P, Stiller C, et al. Vision Meets Robotics: The KITTI Dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
24 | Wang Ke, Cao Chuan, Ma Sai, et al. An Optimization-Based Multi-sensor Fusion Approach Towards Global Drift-free Motion Estimation[J]. IEEE Sensors Journal, 2021, 21(10): 12228-12235. |
[1] | 董庆庆, 吴昊, 钱文华, 孔凤玲. 基于交叉细化和循环注意力的RGB-D显著性目标检测[J]. 系统仿真学报, 2023, 35(9): 1931-1947. |
[2] | 刘书刚, 张林坤, 杜昊东, 王洪涛. 雾天条件下改进YOLOv4的目标检测[J]. 系统仿真学报, 2023, 35(8): 1681-1691. |
[3] | 许仁杰, 张小明, 王晨, 吴鹏. 基于跨模块注意力的3D目标检测方法研究[J]. 系统仿真学报, 2023, 35(12): 2680-2691. |
[4] | 杨敬辉, 刘德康, 杜万和, 邢立宁. 基于图像特征的双目测距系统的研究[J]. 系统仿真学报, 2022, 34(3): 624-632. |
[5] | 林士琪, 王纪凯, 裴浩渊, 赵皓, 陈宗海. 基于物体关系描述的单目语义SLAM方法[J]. 系统仿真学报, 2022, 34(2): 278-284. |
[6] | 朱志豪, 王艳, 纪志成. 基于模型压缩的安瓿瓶外观检测仿真研究[J]. 系统仿真学报, 2022, 34(12): 2575-2583. |
[7] | 蔡鹏, 沈朝萍, 李红燕. 基于标定区域特征点组合匹配的位姿估计方法[J]. 系统仿真学报, 2021, 33(7): 1638-1646. |
[8] | 毕振波, 张世友, 杨花, 吴远红. 基于浅层机器学习的视频监控船舶检测综述[J]. 系统仿真学报, 2021, 33(12): 2792-2807. |
[9] | 石敏, 姚瀚钦, 李淳芃, 陈良臣. 基于深度Alignment网络的足部测量[J]. 系统仿真学报, 2020, 32(7): 1267-1278. |
[10] | 张友鹏, 王淳, 刘艳丽. 移动视点下在线视频的动态阴影检测与跟踪[J]. 系统仿真学报, 2019, 31(7): 1439-1447. |
[11] | 卢裕秋, 孙金玉, 马世伟. 基于深度卷积神经网络的运动目标检测方法[J]. 系统仿真学报, 2019, 31(11): 2275-2280. |
[12] | 蔡强, 魏立伟, 李海生, 曹健. 基于ANNet网络的RGB-D图像的目标检测[J]. 系统仿真学报, 2016, 28(9): 2260-2266. |
[13] | 申东, 李强, 刘昕, 周宇. MIMO雷达中的CPCW设计及性能分析[J]. 系统仿真学报, 2016, 28(5): 1206-1212. |
[14] | 孙晶晶, 于佳骏, 李贝, 谢志峰, 丁友东. 基于人像字典集的卡通自动生成方法[J]. 系统仿真学报, 2015, 27(4): 682-688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||