1 |
李锋, 谢俊, 兰金波, 等. 智能变电站继电保护配置的展望和探讨[J]. 电力自动化设备, 2012, 32(2): 122-126.
|
|
Li Feng, Xie Jun, Lan Jinbo, et al. Prospect and Discussion of Relay System Configuration for Intelligent Substation[J]. Electric Power Automation Equipment, 2012, 32(2): 122-126.
|
2 |
司文荣, 傅晨钊, 卞晓亮, 等. 变电站接地网缺陷诊断无损评价方法综述[J]. 电气工程学报, 2015, 10(8): 14-21.
|
|
Si Wenrong, Fu Chenzhao, Bian Xiaoliang, et al. Overview of the Nondestructive Evaluation Methods for Substation Grounding Grids Fault Diagnosis[J]. Journal of Electrical Engineering, 2015, 10(8): 14-21.
|
3 |
杨凯, 李锐, 罗林, 等. 基于深度学习的车轮踏面表面缺陷检测研究[J]. 信息技术, 2021, 45(7): 93-97.
|
|
Yang Kai, Li Rui, Luo Lin, et al. Research on Wheel Tread Surface Defect Detection Based on Deep Learning[J]. Information Technology, 2021, 45(7): 93-97.
|
4 |
王慧玲, 綦小龙, 武港山. 基于深度卷积神经网络的目标检测技术的研究进展[J]. 计算机科学, 2018, 45(9): 11-19.
|
|
Wang Huiling, Qi Xiaolong, Wu Gangshan. Research Progress of Object Detection Technology Based on Convolutional Neural Network in Deep Learning[J]. Computer Science, 2018, 45(9): 11-19.
|
5 |
李琳. 低光照图像目标检测关键技术研究[D]. 合肥: 合肥工业大学, 2021.
|
|
Li Lin. Research on Key Technology of Low Illumination Image Object Detection[D]. Hefei: Hefei University of Technology, 2021.
|
6 |
Syed Sahil Abbas Zaidi, Ansari M S, Aslam Asra, et al. A Survey of Modern Deep Learning Based Object Detection Models[J]. Digital Signal Processing, 2022, 126: 103514.
|
7 |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
|
8 |
Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 6517-6525.
|
9 |
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[EB/OL]. (2018-04-08) [2023-01-08]. .
|
10 |
Bochkovskiy A, Wang C Y, Liao Hongyuan. YOLOv4: Optimal Speed and Accuracy of Object Detection[EB/OL]. (2020-04-23) [2023-01-15]. .
|
11 |
褚文杰. 基于YOLOv5的坦克装甲车辆目标检测关键技术的研究[D]. 北京: 北京交通大学, 2021.
|
|
Chu Wenjie. Research on the Key Technology of Tank and Armored Vehicle Target Detection Based on YOLOv5[D]. Beijing: Beijing Jiaotong University, 2021.
|
12 |
Ultralytics. Ultralytics Yolov5[EB/OL]. [2022-06-01]. .
|
13 |
赵文清, 康怿瑾, 赵振兵, 等. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95.
|
|
Zhao Wenqing, Kang Yijin, Zhao Zhenbing, et al. A Remote Sensing Image Object Detection Algorithm with Improved YOLOv5s[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 86-95.
|
14 |
张云佐, 郭威, 蔡昭权, 等. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
|
|
Zhang Yunzuo, Guo Wei, Cai Zhaoquan, et al. Remote Sensing Image Target Detection Combining Multi-scale and Attention Mechanism[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(11): 2215-2223.
|
15 |
张锦, 屈佩琪, 孙程, 等. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用, 2022, 42(4): 1292-1300.
|
|
Zhang Jin, Qu Peiqi, Sun Cheng, et al. Safety Helmet Wearing Detection Algorithm Based on Improved YOLOv5[J]. Journal of Computer Applications, 2022, 42(4): 1292-1300.
|
16 |
李文举, 张干, 崔柳, 等. 基于坐标注意力的轻量级交通标志识别模型[J]. 计算机应用, 2023, 43(2): 608-614.
|
|
Li Wenju, Zhang Gan, Cui Liu, et al. Lightweight Traffic Sign Recognition Model Based on Coordinate Attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614.
|
17 |
刘晓倩, 李士心, 李保胜, 等. 基于改进YOLOv5的交通标志检测算法研究[J]. 计算机科学与应用, 2022, 12(9): 2161-2168.
|
|
Liu Xiaoqian, Li Shixin, Li Baosheng, et al. Research on Traffic Sign Detection Algorithm Based on Improved YOLOv5[J]. Computer Science and Application, 2022, 12(9): 2161-2168.
|
18 |
程松, 杨洪刚, 徐学谦, 等. 基于YOLOv5的改进轻量型X射线铝合金焊缝缺陷检测算法[J]. 中国激光, 2022, 49(21): 130-138.
|
|
Cheng Song, Yang Honggang, Xu Xueqian, et al. Improved Lightweight X-Ray Aluminum Alloy Weld Defects Detection Algorithm Based on YOLOv5[J]. Chinese Journal of Lasers, 2022, 49(21): 130-138.
|
19 |
张宇杰, 蔡乐才, 成奎, 等. 改进YOLOv5金属表面缺陷检测方法[J]. 四川轻化工大学学报(自然科学版), 2022, 35(4): 32-41.
|
|
Zhang Yujie, Cai Lecai, Cheng Kui, et al. An lmproved YOLOv5 Method for the Detection of Metal Surface Defects[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition), 2022, 35(4): 32-41.
|
20 |
陈婷, 周旻, 韩勤, 等. 基于改进YOLOv4的变电站缺陷检测[J]. 计算机系统应用, 2022, 31(6): 245-251.
|
|
Chen Ting, Zhou Min, Han Qin, et al. Defect Detection for Substation Based on Improved YOLOv4[J]. Computer Systems & Applications, 2022, 31(6): 245-251.
|
21 |
罗箫瑜, 张志. 基于改进YOLOX的变电站设备缺陷检测方法[J]. 吉林大学学报(信息科学版), 2023, 41(5): 848-857.
|
|
Luo Xiaoyu, Zhang Zhi. Defect Detection for Substation Based on Improved YOLOX[J]. Journal of Jilin University(Information Science Edition), 2023, 41(5): 848-857.
|
22 |
伍艺佳, 华雄, 王丽蓉, 等. 基于注意力机制学习的变电设备缺陷检测方法[J]. 计算机与现代化, 2021(2): 7-12, 17.
|
|
Wu Yijia, Hua Xiong, Wang Lirong, et al. Method of Substation Equipment Defect Detection Based on Attention Mechanism Learning[J]. Computer and Modernization, 2021(2): 7-12, 17.
|
23 |
谢政峰. 基于深度学习的新材料地板缺陷检测技术研究[D]. 成都: 四川大学, 2021.
|
|
Xie Zhengfeng. Research on Defect Detection Technology of New Material Flooring Based on Deep Leaning[D]. Chengdu: Sichuan University, 2021.
|
24 |
谷玉海, 曹梦婷, 修嘉芸, 等. 基于YOLOv4网络的违章行为检测算法[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 114-121.
|
|
Gu Yuhai, Cao Mengting, Xiu Jiayun, et al. Algorithm for Detecting Violations Based on YOLOv4 Network[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(8): 114-121.
|
25 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
26 |
Devlin J, Chang Mingwei, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
|
27 |
Radford A, Narasimhan K, Salimans T, et al. Improving Language Understanding by Generative Pre-training[EB/OL]. [2023-02-01]. .
|
28 |
Peters M E, Neumann M, Iyyer M, et al. Deep Contextualized Word Representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 2227-2237.
|
29 |
侯丽微, 胡珀, 曹雯琳. 主题关键词信息融合的中文生成式自动摘要研究[J]. 自动化学报, 2019, 45(3): 530-539.
|
|
Hou Liwei, Hu Po, Cao Wenlin. Automatic Chinese Abstractive Summarization with Topical Keywords Fusion[J]. Acta Automatica Sinica, 2019, 45(3): 530-539.
|
30 |
刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16.
|
|
Liu Wenting, Lu Xinming. Research Progress of Transformer Based on Computer Vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16.
|
31 |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16×16 Words:Transformers for Image Recognition at Scale[C]//ICLR 2021. New York: ICIR, 2021: 1-22.
|
32 |
Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007.
|
33 |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755.
|