系统仿真学报 ›› 2025, Vol. 37 ›› Issue (4): 823-844.doi: 10.16182/j.issn1004731x.joss.23-1468
• 综述 • 下一篇
周棪忠, 罗俊仁, 谷学强, 张万鹏
收稿日期:
2023-12-04
修回日期:
2024-01-08
出版日期:
2025-04-17
发布日期:
2025-04-16
通讯作者:
张万鹏
第一作者简介:
周棪忠(1999-),男,土家族,硕士生,研究方向为智能规划、多智能体学习。
基金资助:
Zhou Yanzhong, Luo Junren, Gu Xueqiang, Zhang Wanpeng
Received:
2023-12-04
Revised:
2024-01-08
Online:
2025-04-17
Published:
2025-04-16
Contact:
Zhang Wanpeng
摘要:
从大语言模型的视角入手,对智能规划的定义和发展进行概述,简要介绍了传统智能规划的方法;基于大语言智能体与智能规划的紧密关系,介绍了大语言模型的架构和典型的大模型智能体;围绕大模型的智能规划,梳理了规划语言学习、思维链推理、反馈优化和流程自动化共4类规划方法;结合当前的挑战与困难,介绍大模型进行智能规划的前沿研究展望。
中图分类号:
周棪忠,罗俊仁,谷学强等 . 大语言模型视角下的智能规划方法综述[J]. 系统仿真学报, 2025, 37(4): 823-844.
Zhou Yanzhong,Luo Junren,Gu Xueqiang,et al . Survey on Intelligent Planning Methods from Large Language Models Perspective[J]. Journal of System Simulation, 2025, 37(4): 823-844.
表1
基于大语言模型的规划方法
方法 | 名称 | 特点 |
---|---|---|
规划 语言 学习 | LLM-P[ | 将经典规划器的优势融入到LLM框架中,实现用户用自然语言进行任务规划领域建模 |
LLM-DP[ | 利用LLM将观测值、当前世界状态和目标状态转换为PDDL,使其能够完整且准确地表示规划问题 | |
CO-LLM[ | 结合外部低级规划器来有效地执行基于高层次规划的操作 | |
LLM-Planner[ | 当在任务完成过程中遇到对象不匹配和无法实现的规划结果时,该算法会动态更新LLM生成的规划结果 | |
思维 推理 | CoT[ | 模仿人类思考的过程,给出逐步解决问题的依据,将一个多步问题分解为多个可被单独解答的中间步骤 |
零样本CoT[ | 不需要构建思维链的演示样例,减少了人工成本 | |
CoT-SC[ | 进行分步骤思考的过程中采样生成不同的思维链,获取多个答案结果,通过投票机制选取最终结果 | |
ToT[ | 分解问题进行规划的过程中使用树状结构生成规划的步骤 | |
RecMind[ | 利用自我启发机制,将在思维树的规划过程中被丢弃的一些历史步骤利用起来 | |
GoT[ | 将思维树中的树状分解结构扩展为图结构 | |
AoT[ | 将算法示例合并到提示中 | |
DAG推理[ | 通过有向无环图对思维过程进行更一般性的建模 | |
XoT[ | 可以探索不同的思维结构,如链、树、图等 | |
SoT[ | 生成答案的骨架,进行并行工具调用或分批解码,并行完成每个骨架点的内容 | |
PoT[ | 通过大语言模型不仅生成推理问题的答案,而且生成能够反映推理逻辑的程序代码 | |
JUDEC[ | 采用基于Elo的评分机制给思维步骤进行打分判定 | |
反馈 优化 | ReAct[ | 使用思维-行动-观察三元组构建提示,思想组件旨在促进高级规划和规划,从而指导行为 |
Voyager[ | 结合了环境反馈、执行错误,以及自我验证3种反馈 | |
Ghost[ | 将环境状态以及每个执行动作的成功或者失败信息作为反馈 | |
SayPlan[ | 利用来自场景图模拟器的环境反馈来验证和完善其规划结果 | |
DEPS[ | 告知任务失败的详细原因,有助于在长期规划过程中更好地从反馈中纠正错误 | |
Inner Monologue[ | 主动征求用户关于外部场景描述的反馈意见,将用户的反馈意见作为提示输入 | |
Self-Refine[ | 输出结果,然后收到反馈进行迭代优化,直到达到用户满意的规划结果 | |
Self-Check[ | 对智能体在各个阶段生成的规划结果进行检查和评估,纠正在规划过程中的错误 | |
InterAct[ | 使用不同的语言模型对规划的结果进行检查和排序,帮助主要语言模型避免错误和低效的操作 | |
Reflexion[ | 提出了一种不通过更新权重,而是通过语言反馈来增强大模型的模型框架 | |
流程 自动化 | LangChain[ | 大语言模型与外部计算和数据源相结合,通过组件的方式构建遵循一般流程的语言模型应用程序 |
HuggingGPT[ | 让大语言模型充当一个控制器来管理现有的AI模型,解决复杂的AI任务 | |
低代码LLM[ | 通过6种简单的低代码可视化编程交互,包括支持点击、拖动或文本编辑等,用户可以通过交互操作将自己的想法融入规划流程 | |
MetaGPT[ | 将SOP编码为提示,让智能体生成规范化的设计文档、接口等,明确角色责任、提高协作质量 | |
自动化智能体框架[ | 把智能体的状态抽象为状态类 | |
Prompt Flow[ | 简化基于LLM的应用程序的端到端开发流程,使提示工程变得更加容易,使用户能够构建具有更高质量的LLM应用程序 | |
RAP-LLM[ | 大模型通过自然语言处理技术将用户需求转换为RPA领域的表述,同时生成自动化流程,完成之后,RPA执行既定方案,完成业务流程自动化闭环 | |
ProAgent[ | 结合大模型智能体帮助人类进行工作流构建,并让智能体自主处理工作流中涉及复杂决策与动态处理的环节 |
1 | Fikes R E, Nilsson N J. Strips: A New Approach to the Application of Theorem Proving to Problem Solving[J]. Artificial Intelligence, 1971, 2(3/4): 189-208. |
2 | Kase S E, Hung C P, Krayzman T, et al. The Future of Collaborative Human-artificial Intelligence Decision-making for Mission Planning[J]. Frontiers in Psychology, 2022, 13: 850628. |
3 | Shanahan M. Talking About Large Language Models[J]. Communications of the ACM, 2024, 67(2): 68-79. |
4 | Bonet Blai, Geffner Héctor. Planning as Heuristic Search[J]. Artificial Intelligence, 2001, 129(1/2): 5-33. |
5 | Laborie Philippe. Algorithms for Propagating Resource Constraints in AI Planning and Scheduling: Existing Approaches and New Results[J]. Artificial Intelligence, 2003, 143(2): 151-188. |
6 | Cross S E, Walker E. Dart: Applying Knowledge-based Planning and Scheduling to Crisis Action Planning[J]. Intelligent scheduling, 1994, 25:711-729. |
7 | 张万鹏, 王楠, 陈璟. 一种利用工作流模型的分层任务网络规划领域建模方法[J]. 智能系统学报, 2011, 6(3): 239-247. |
Zhang Wanpeng, Wang Nan, Chen Jing. An HTN Planning Domain Modeling Method Using a Workflow Model[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 239-247. | |
8 | Weld D S. Recent Advances in AI Planning[J]. AI Magazine, 1999, 20(2): 93-123. |
9 | Newell A, Simon H A. GPS, a Program that Simulates Human Thought [C]//Computation & Intelligence: Collected Readings. USA: American Association for Artificial Intelligence, 1995: 415 - 428 |
10 | Green C. Theorem-proving by Resolution as a Basis for Question-answering Systems[J]. Machine Intelligence, 1969, 4: 183-205. |
11 | Bylander T. The Computational Complexity of Propositional STRIPS Planning[J]. Artificial Intelligence, 1994, 69(1/2): 165-204. |
12 | Borrajo Daniel, Veloso M. Lazy Incremental Learning of Control Knowledge for Efficiently Obtaining Quality Plans[J]. Artificial Intelligence Review, 1997, 11(1): 371-405. |
13 | Cohen W W. Abductive Explanation-based Learning: A Solution to the Multiple Inconsistent Explanation Problem[J]. Machine Learning, 1992, 8(2): 167-219. |
14 | Aler Ricardo, Borrajo Daniel, Isasi Pedro. Genetic Programming and Deductive-inductive Learning: A Multi-strategy Approach[C]//Proceedings of the Fifteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1998: 10-18. |
15 | Tomás de la Rosa, Jiménez Sergio, Borrajo Daniel. Learning Relational Decision Trees for Guiding Heuristic Planning[C]//Proceedings of the Eighteenth International Conference on International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2008: 60-67. |
16 | Petrik M, Zilberstein S. Learning Heuristic Functions Through Approximate Linear Programming[C]//Proceedings of the Eighteenth International Conference on International Conference on Automated Planning and Scheduling. Palo Alto: AAAI Press, 2008: 248-255. |
17 | Blum A L, Furst M L. Fast Planning Through Planning Graph Analysis[J]. Artificial Intelligence, 1997, 90(1/2): 281-300. |
18 | Fox M, Long D. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains[J]. Journal of Artificial Intelligence Research, 2003, 20: 61-124. |
19 | Edelkamp S, Hoffmann J. PDDL2.2: The Language for the Classical Part of the 4th International Planning Competition[R]. Technical Report 195, University of Freiburg, 2004. |
20 | Gerevini A, Long D. Preferences and Soft Constraints in PDDL3[C]//ICAPS Workshop on Planning with Preferences and Soft Constraints. United Kingdom: AAAI Press, 2006: 46-53 |
21 | Höller Daniel, Behnke Gregor, Bercher Pascal, et al. HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence and Thirty-Second Conference on Innovative Applications of Artificial Intelligence and Tenth Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9883-9891. |
22 | Strobel Volker, Kirsch Alexandra. MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems[M]//Vallati M, Kitchin D. Knowledge Engineering Tools and Techniques for AI Planning. Cham: Springer International Publishing, 2020: 67-90. |
23 | Tan Zhixuan. PDDL.jl: An Extensible Interpreter and Compiler Interface for Fast and Flexible AI Planning[D]. Cambridge: Massachusetts Institute of Technology, 2022. |
24 | Ana Margarida Amândio, José Manuel Coelho das Neves, Parente Manuel. Intelligent Planning of Road Pavement Rehabilitation Processes Through Optimization Systems[J]. Transportation Engineering, 2021, 5: 100081. |
25 | Hoffmann Jörg, Nebel Bernhard. The FF Planning System: Fast Plan Generation Through Heuristic Search[J]. Journal of Artificial Intelligence Research, 2001, 14(1): 253-302. |
26 | Gerevini Alfonso, Serina Ivan. LPG: A Planner Based on Local Search for Planning Graphs with Action Costs[C]//Proceedings of the Sixth International Conference on Artificial Intelligence Planning Systems. Palo Alto: AAAI Press, 2002: 13-22. |
27 | Georgievski Ilche, Aiello Marco. An Overview of Hierarchical Task Network Planning[EB/OL]. [2023-11-25]. . |
28 | Tate A, Drabble B, Kirby R. O-Plan2: An Open Architecture for Command, Planning and Control[J]. Intelligent Scheduling, 1994, 1: 213-239. |
29 | Hutchinson S A, Kak A C. Extending the Classical AI Planning Paradigm to Robotic Assembly Planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1990: 182-189. |
30 | Nau D, Au T C, Ilghami O, et al. SHOP2: An HTN Planning System[J]. Journal of Artificial Intelligence Research, 2003, 20(1): 379-404. |
31 | Burch J R, Clarke E M, McMillan K L, et al. Symbolic Model Checking: 1020 States and Beyond[J]. Information and Computation, 1992, 98(2): 142-170. |
32 | Blum A L, Langford J C. Probabilistic Planning in the Graphplan Framework[C]//Recent Advances in AI Planning. Berlin: Springer Berlin Heidelberg, 2000: 319-332. |
33 | Smith D E, Weld D S. Conformant Graphplan[C]//Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Palo Alto: AAAI Press, 1998: 889-896. |
34 | Weld D S, Anderson C R, Smith D E. Extending Graphplan to Handle Uncertainty and Sensing Actions[C]//Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Palo Alto: AAAI Press, 1998: 897-904. |
35 | Russell S J, Norvig P. Artificial Intelligence: A Modern Approach[M]. London: Prentice Hall Press, 2010. |
36 | Weng Lilian. LLM Powered Autonomous Agents[EB/OL]. (2023-06-23) [2023-11-25]. . |
37 | Nwana H S, Ndumu D T. An Introduction to Agent Technology[M]//Nwana H S, Azarmi N. Software Agents and Soft Computing Towards Enhancing Machine Intelligence: Concepts and Applications. Berlin: Springer Berlin Heidelberg, 1997: 1-26. |
38 | Gravitas S. Auto-GPT[EB/OL]. (2023-04-01) [2023-11-25]. . |
39 | Mazzia Vittorio, Angarano Simone, Salvetti Francesco, et al. Action Transformer: A Self-attention Model for Short-time Pose-based Human Action Recognition[J]. Pattern Recognition, 2022, 124: 108487. |
40 | Zhou S, Xu F, Zhu H, et al. WebArena: A Realistic Web Environment for Building Autonomous Agents[C]//12th International Conference on Learning Representations, ICLR 2024. Hybrid, Vienna, Austria: International Conference on Learning Representations, ICLR, 2024:1-22. |
41 | Team XAgent. XAgent[EB/OL]. (2023-10-15) [2023-11-25]. . |
42 | Li Guohao, Hasan Abed Al Kader Hammoud, Itani Hani, et al. CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society[C]//37th Conference on Neural Information Processing Systems (NeurIPS 2023). Red Hook: Curran Associates, Inc., 2023: 51991-52008. |
43 | Park J S, O'Brien J C, Cai C J, et al. Generative Agents: Interactive Simulacra of Human Behavior[C]//Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2023: 1-22. |
44 | Qian Chen, Cong Xin, Yang Cheng, et al. Communicative Agents for Software Development[EB/OL]. (2023-07-16) [2023-11-25]. . |
45 | Wang Guanzhi, Xie Yuqi, Jiang Yunfan, et al. Voyager: An Open-ended Embodied Agent with Large Language Models[EB/OL]. (2023-10-19) [2023-11-25]. . |
46 | Gupta T, Kembhavi A. Visual Programming: Compositional Visual Reasoning Without Training[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 14953-14962. |
47 | Surís Dídac, Menon S, Vondrick C. ViperGPT: Visual Inference via Python Execution for Reasoning[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2023: 11854-11864. |
48 | Yang Zhengyuan, Li Linjie, Wang Jianfeng, et al. MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action[EB/OL]. (2023-03-20) [2023-11-25]. . |
49 | Valmeekam K, Marquez M, Sreedharan S, et al. On the Planning Abilities of Large Language Models: A Critical Investigation[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 75993-76005. |
50 | Liu Bo, Jiang Yuqian, Zhang Xiaohan, et al. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency[EB/OL]. (2023-09-27) [2023-11-25]. . |
51 | Dagan G, Keller F, Lascarides A. Dynamic Planning with a LLM[EB/OL]. (2023-08-11) [2023-11-25]. . |
52 | Zhang Hongxin, Du Weihua, Shan Jiaming, et al. Building Cooperative Embodied Agents Modularly with Large Language Models[EB/OL]. (2023-07-05) [2023-11-25]. . |
53 | Song C H, Sadler B M, Wu Jiaman, et al. LLM-planner: Few-shot Grounded Planning for Embodied Agents with Large Language Models[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2023: 2986-2997. |
54 | Wei J, Wang Xuezhi, Schuurmans D, et al. Chain-of-thought Prompting Elicits Reasoning in Large Language Models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 24824-24837. |
55 | Kojima T, Gu Shixiang, Reid M, et al. Large Language Models are Zero-shot Reasoners[C]//Advances in Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 22199-22213. |
56 | Wang Xuezhi, Wei J, Schuurmans D, et al. Self-consistency Improves Chain of Thought Reasoning in Language Models[EB/OL]. (2023-03-07) [2023-11-25]. . |
57 | Yao Shunyu, Yu Dian, Zhao J, et al. Tree of Thoughts: Deliberate Problem Solving with Large Language Models[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 11809-11822. |
58 | Wang Yancheng, Jiang Ziyan, Chen Zheng, et al. RecMind: Large Language Model Powered Agent for Recommendation[C]//Findings of the Association for Computational Linguistics: NAACL 2024. Stroudsburg: ACL, 2024: 4351-4364. |
59 | Besta Maciej, Blach Nils, Kubicek Ales, et al. Graph of Thoughts: Solving Elaborate Problems with Large Language Models[C]//Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence. Reston, VA, USA: AIAA, 2024: 17682-17690. |
60 | Sel Bilgehan, Al-Tawaha Ahmad, Khattar Vanshaj, et al. Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models[C]//Proceedings of the 41st International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2025: 44136-44189. |
61 | Zhang Yifan, Yang Jingqin, Yuan Yang, et al. Cumulative Reasoning with Large Language Models[EB/OL]. (2023-08-08) [2023-11-25]. . |
62 | Ding Ruomeng, Zhang Chaoyun, Wang Lu, et al. Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation[C]//Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 1638-1662. |
63 | Ning Xuefei, Lin Zinan, Zhou Zixuan, et al. Skeleton-of-thought: Prompting LLMs for Efficient Parallel Generation[EB/OL]. (2023-07-28) [2023-11-25]. . |
64 | Chen Wenhu, Ma Xueguang, Wang Xinyi, et al. Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks[EB/OL]. (2023-10-23) [2023-11-25]. . |
65 | Ye Yining, Cong Xin, Qin Yujia, et al. Large Language Model as Autonomous Decision Maker[EB/OL]. (2023-08-24) [2023-11-25]. . |
66 | Yao Shunyu, Zhao J, Yu Dian, et al. ReAct: Synergizing Reasoning and Acting in Language Models[EB/OL]. (2023-03-10) [2023-11-25]. . |
67 | Zhu Xizhou, Chen Yuntao, Tian Hao, et al. Ghost in the Minecraft: Generally Capable Agents for Open-world Environments via Large Language Models with Text-based Knowledge and Memory[EB/OL]. (2023-06-01) [2023-11-25]. . |
68 | Rana Krishan, Haviland Jesse, Garg Sourav, et al. SayPlan: Grounding Large Language Models Using 3D Scene Graphs for Scalable Robot Task Planning[EB/OL]. (2023-09-27) [2023-11-25]. . |
69 | Wang Zihao, Cai Shaofei, Chen Guanzhou, et al. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-world Multi-task Agents[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 34153-34189. |
70 | Huang Wenlong, Xia Fei, Xiao T, et al. Inner Monologue: Embodied Reasoning Through Planning with Language Models[C]//Proceedings of The 6th Conference on Robot Learning. Chia Laguna Resort: PMLR, 2023: 1769-1782. |
71 | Madaan A, Tandon N, Gupta P, et al. SELF-REFINE: Iterative Refinement with Self-feedback[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 46534-46594. |
72 | Miao Ning, Teh Y W, Rainforth T. SelfCheck: Using LLMs to Zero-shot Check Their Own Step-by-step Reasoning[EB/OL]. (2023-10-05) [2023-11-25]. . |
73 | Chen Polin, Chang Chengshang. InterAct: Exploring the Potentials of ChatGPT as a Cooperative Agent[EB/OL]. (2023-08-03) [2023-11-25]. . |
74 | Shinn N, Cassano F, Gopinath A, et al. Reflexion: Language Agents with Verbal Reinforcement Learning[C]//Advances in Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2023: 8634-8652. |
75 | LangChain. Introduction[EB/OL]. [2023-11-25]. . |
76 | Pandya Keivalya, Holia Mehfuza. Automating Customer Service Using LangChain: Building Custom Open-source GPT Chatbot for Organizations[EB/OL]. (2023-10-09) [2023-11-25]. . |
77 | Shen Yongliang, Song Kaitao, Tan Xu, et al. HuggingGPT: Solving AI Tasks with ChatGPT and Its Friends in Hugging Face[EB/OL]. (2023-12-03) [2023-11-25]. . |
78 | Cai Yuzhe, Mao Shaoguang, Wu Wenshan, et al. Low-code LLM: Visual Programming over LLMs[EB/OL]. (2023-04-17) [2023-11-25]. . |
79 | Hong Sirui, Zheng Xiawu, Chen J, et al. MetaGPT: Meta Programming for Multi-agent Collaborative Framework[EB/OL]. (2023-08-01) [2023-11-25]. . |
80 | Zhou Wangchunshu, Jiang Yuchen, Li Long, et al. Agents: An Open-source Framework for Autonomous Language Agents[EB/OL]. [2023-11-25]. . |
81 | Anon. Prompt Flow[EB/OL]. (2023-06-30) [2023-12-27]. . |
82 | Beerbaum D O. Generative Artificial Intelligence (GAI) Ethics Taxonomy-applying ChatGPT for Robotic Process Automation(GAI-RPA)as Business Case[J]. Available at SSRN, 2023, 21(6):1-20. |
83 | Korzynski Paweł, Andrzej Krzysztof Kozminski, Baczynska Anna. Navigating Leadership Challenges with Technology: Uncovering the Potential of ChatGPT, Virtual Reality, Human Capital Management Systems, Robotic Process Automation, and Social Media[J]. International Entrepreneurship Review, 2023, 9(2): 7-18. |
84 | Ye Yining, Cong Xin, Tian Shizuo, et al. ProAgent: From Robotic Process Automation to Agentic Process Automation[EB/OL]. (2023-11-23) [2023-11-25]. . |
85 | Radford A, Kim J W, Hallacy C, et al. Learning Transferable Visual Models from Natural Language Supervision[C]//Proceedings of the 38th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2021: 8748-8763. |
86 | Li Junnan, Li Dongxu, Xiong Caiming, et al. BLIP: Bootstrapping Language-image Pre-training for Unified Vision-language Understanding and Generation[C]//Proceedings of the 39th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2022: 12888-12900. |
87 | Gabriel S, Celikyilmaz A, Jha R, et al. GO FIGURE: A Meta Evaluation of Factuality in Summarization[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 478-487. |
88 | Gou Zhibin, Shao Zhihong, Gong Yeyun, et al. CRITIC: Large Language Models Can Self-correct with Tool-interactive Critiquing[EB/OL]. (2023-05-19) [2023-11-25]. . |
89 | Fu Bang. GPTCache: An Open-source Semantic Cache for LLM Applications Enabling Faster Answers and Cost Savings[C]//Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023). Stroudsburg: ACL, 2023: 212-218. |
90 | Feng Xidong, Wan Ziyu, Wen Muning, et al. Alphazero-like Tree-search Can Guide Large Language Model Decoding and Training[EB/OL]. (2023-09-29) [2023-11-25]. . |
91 | Fedus W, Zoph B, Shazeer N. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity[J]. The Journal of Machine Learning Research, 2022, 23(1): 5232-5270. |
92 | Schick Timo, Dwivedi-Yu Jane, Dessì Roberto, et al. Toolformer: Language Models Can Teach Themselves to Use Tools[EB/OL]. [2023-11-25]. . |
93 | Liu Minghuan, Zhu Menghui, Zhang Weinan. Goal-conditioned Reinforcement Learning: Problems and Solutions[EB/OL]. (2022-09-02) [2023-11-25]. . |
94 | Gao Luyu, Madaan A, Zhou Shuyan, et al. PAL: Program-aided Language Models[C]//Proceedings of the 40th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2023: 10764-10799. |
95 | Wang Xingyao, Li Sha, Ji Heng. Code4Struct: Code Generation for Few-shot Event Structure Prediction[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 3640-3663. |
96 | Chen A, Scheurer Jérémy, Korbak T, et al. Improving Code Generation by Training with Natural Language Feedback[EB/OL]. (2023-03-28) [2023-11-25]. . |
97 | Palantir Technologies Inc. AIP[EB/OL]. (2023-09-01) [2023-12-25]. . |
98 | Su Yihao. Artificial Intelligence: The Significance of Tesla Bot[J]. Highlights in Science, Engineering and Technology, 2023, 39: 1351-1355. |
99 | Huang W, Wang C, Zhang R, et al. VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models[C]//7th Annual Conference on Robot Learning. Atlanta, USA: PMLR, 2023, 229: 540-562. |
[1] | 王蕊, 李向阳, 王栋, 马红光, 张志利. 基于认知偏差的雷达对抗建模方法研究[J]. 系统仿真学报, 2025, 37(4): 1090-1101. |
[2] | 王玉帅, 司光亚. 基于杀伤链和FDNA的能力依赖关系分析[J]. 系统仿真学报, 2025, 37(4): 1076-1089. |
[3] | 黄捷, 黄捷. 一种时变扰动下的无人车辆智能跟踪控制方法[J]. 系统仿真学报, 2025, 37(4): 1063-1075. |
[4] | 许明, 李金烨, 左东宇, 张晶. 基于流量预测的信号灯配时优化强化学习方法[J]. 系统仿真学报, 2025, 37(4): 1051-1062. |
[5] | 李杰, 刘扬, 李良, 苏本淦, 魏佳隆, 周广达, 石艳敏, 赵振. 基于跨阶段双分支特征聚合的遥感小目标检测[J]. 系统仿真学报, 2025, 37(4): 1025-1040. |
[6] | 张星宇, 吴保磊, 王军, 洪妙英, 王佳慧, 祁永强. 基于滑移预测的月球车双层路径规划方法研究[J]. 系统仿真学报, 2025, 37(4): 1008-1024. |
[7] | 万士正, 程禹, 张旭, 范旭伟. 自适应视场角制导半实物仿真能力拓展方法[J]. 系统仿真学报, 2025, 37(3): 563-570. |
[8] | 郭博, 铁鸣, 范文慧. 复合材料结构振动仿真及其多元统计分析方法[J]. 系统仿真学报, 2025, 37(3): 571-583. |
[9] | 张雷, 张雪超, 王超, 薄祥雷. 基于在线强化学习算法的救护车智能调控模型[J]. 系统仿真学报, 2025, 37(3): 584-594. |
[10] | 李兆彬, 叶军, 周浩岩, 汪一心, 韩宇贞. 融合变异萤火虫算法的三支聚类方法[J]. 系统仿真学报, 2025, 37(3): 646-656. |
[11] | 许明, 齐光尧, 奇格奇. 基于动态反投影网络的细粒度交通流推断模型[J]. 系统仿真学报, 2025, 37(3): 657-666. |
[12] | 林桂娟, 李子涵, 王宇. 基于全局关键点提取的改进A*算法全局路径规划研究[J]. 系统仿真学报, 2025, 37(3): 667-678. |
[13] | 李若晴, 赵瑶池, 胡祝华, 戚文璐, 刘广丰. TOHF:一种针对资源受限室内VSLAM的特征提取器[J]. 系统仿真学报, 2025, 37(3): 691-703. |
[14] | 曹晞, 刘波, 苏炳志, 聂涛. 基于MBSE和VAPS的民用直升机显控系统设计与验证[J]. 系统仿真学报, 2025, 37(3): 704-717. |
[15] | 陈雪, 曹建文. 基于动态耦合模型的CAE仿真优化方法[J]. 系统仿真学报, 2025, 37(3): 718-731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||